Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 October 2020 | Story Leonie Bolleurs | Photo Supplied
Disinfectants
Once they have an understanding of the development of disinfectant resistance, the Veterinary Biotechnology group will be able to make recommendations to hospitals and the agricultural industry on how to prevent the development of these resistant microorganisms.

SARS-CoV-2, an enveloped coronavirus, is susceptible to most disinfectants. Therefore, the majority of disinfectants, including those containing 70% ethanol, should be able to kill the virus fairly quickly.

Nevertheless, it was found that some bacteria are highly resistant to several commercially available disinfectants. These bacteria are currently still quite rare, and the work of the Veterinary Biotechnology group at the University of the Free State (UFS) aims to prevent the development of more highly resistant bacteria.

The research group in the Department of Microbial, Biochemical and Food Biotechnology is working on disinfectant resistance. They recently published an article, ‘Molecular basis of bacterial disinfectant resistance’.

Group members include: Prof Robert Bragg, professor in the department; Dr Charlotte Boucher, research associate; Samantha Mc Carlie, master’s student and laboratory manager; master’s students, Twyne Skein and Gunther Staats; honours students, Carlo Visser, Bernadette Belter, Boudine van der Walt, Jacky Huang, and Mart-Louise van Zyl; and an NRF intern, Gloria Kankam.

According to Mc Carlie, the work being done on disinfectant resistance is largely attributable to the major issues currently experienced with antibiotic resistance.

“Antibiotic resistance is becoming one of the biggest life-threatening challenges of our time – even overshadowing the current COVID-19 pandemic – as multidrug-resistant infections are becoming increasingly difficult to treat. Bacterial infections that are present in hospitals and agriculture are becoming unresponsive to many of the antibiotics currently in use, marking the start of a post-antibiotic era.”

It is predicted that by 2050, antimicrobial resistance could lead to as many deaths as cancer causes today and could account for between 10 million and 50 million deaths per year.

Lack of proper biosecurity

Mc Carlie says the resistance to antibiotics is spreading rapidly due to a lack of proper biosecurity measures in the food and agricultural industry as well as in the hospital environment, even if the COVID-19 pandemic has gone a long way towards increasing the awareness of hospital staff to the importance of good biosecurity. Millions of rands are lost every year due to multidrug-resistant infections in the dairy and poultry industries of South Africa, and superbugs are present in almost every major hospital in the country.

“Currently, the best viable protection we have against bacteria is biosecurity and disinfectants. Biosecurity relies heavily on the use of disinfectants to control bacterial growth. This makes it only more troubling that disinfectant resistance is emerging at an alarming rate.”

She believes it is important to understand the mechanisms of resistance in order to combat resistance to disinfectants. “Once the mechanisms are identified, possible solutions can be investigated.”

The research group is currently monitoring disinfectant resistance, looking at which microorganisms are resistant to which disinfectants. They take environmental samples and test the levels of disinfectant resistance to observe the development and spread thereof.

Once they have an understanding of the development of disinfectant resistance, the Veterinary Biotechnology group will be able to make recommendations to hospitals and the agricultural industry on how to prevent the development of these resistant microorganisms.

“As we learn more about these highly resistant isolates, it will direct day-to-day treatment of multidrug-resistant infections and hopefully aid in the fight against antibiotic and disinfectant resistance,” says Mc Carlie.

The dangers of over-prescribing

“Resistance to antimicrobials such as antibiotics and disinfectants is a natural occurrence. We did not invent antibiotics, we discovered them, and so bacterial resistance has been around for as long as antibiotics have – as a survival strategy.”

“However, the widespread use of antimicrobials creates selective pressure for those microorganisms that are resistant to the antimicrobial being used. Over-prescribing and improper use of antibiotics has led to widespread antibiotic resistance. We expect the same trend to be seen with disinfectant resistance in the near future,” says Mc Carlie.

She urges the public to take note that disease-causing microorganisms can become resistant to antibiotics and disinfectants if they are not used correctly. A course of antibiotics should always be taken at the correct time and until the last dose. In the same way, disinfectants should be used at the recommended level and not diluted below that level.

These resistant organisms are causing major issues in the agricultural and medical industries, but this effect has not been seen in households yet. As long as disinfectants are used correctly, most will be able to kill the novel coronavirus.

There is, however, a need to establish tests on the efficacy of the massive number of ‘hand sanitisers’ that are now suddenly available.

According to Prof Bragg, existing disinfectants and hand sanitisers have been specifically tested against SARS-CoV-2 and have been found to be effective. He says the undergraduate students in the department will be evaluating a wide range of different hand sanitisers as part of their practical training.

Mc Carlie adds that the excessive use of poor-quality disinfectants as hand sanitisers can result in bacteria developing resistance to these disinfectants. “It is therefore very important that reliable high-quality disinfectants are used as hand sanitisers during this COVID-19 crisis, otherwise we will be replacing one crisis with a potentially even bigger crisis.”

Mc Carlie believes there is a need to start looking at alternatives to control bacterial growth. “Disinfectants are currently the only viable option, and if these microorganisms become resistant to disinfectants as well, we will have nowhere else to turn,” she says.

News Archive

Third NRF A-rated researcher for UFS
2017-02-03

Description: Prof Jansen, NRF A-rated researcher  Tags: Prof Jansen, NRF A-rated researcher

Prof Jonathan Jansen, senior researcher at the UFS
Faculty of Education, recently joined two other
UFS researchers as NRF A-rated researchers.
They from the left are: Profs Melanie Walker, Maxim Finkelstein
and Jansen.
Photo: Charl Devenish

The University of the Free State received its third A-rating from the National Research Foundation (NRF) when Prof Jonathan Jansen was awarded an A2-rating.

Prof Jansen is a Senior Research Professor in Education secondary research field and field of specialisation: Development education and Curriculum theory at the UFS Faculty of Education and Fellow at the Center for Advanced Studies at Stanford University in the US.

Prof Jansen’s rating follows P-rating
Prof Jansen’s rating also adds to the recent P-rating awarded to Dr Daniel Spence, a postdoctoral Research Fellow at the International Studies Group. In receiving the rating, the UFS became the only university in South Africa with a P-rated researcher in History.

P-ratings are given to young researchers, usually under the age of 35, who have the potential to become leaders in their field. Researchers in this group are recognised by all, or the overwhelming majority of, reviewers, as having demonstrated the potential to become future international leaders. 

“Obtaining another A-rating is indicative of the university’s drive to enhance its research profile – nationally as well as internationally. I am thankful to our scholars for their commitment to the rating process and look forward to receive the results of this year’s ratings,” said Prof Corli Witthuhn, Vice-Rector: Research at the UFS.   

Total number of researchers increased
The UFS has also upped the ante with regards to its total number of NRF-rated researchers during the latest rating and evaluation with an increase from 127 in 2015 to 149 rated researchers in 2016.

In 2015, Prof Maxim Finkelstein from the Department of Mathematical Statistics and Actuarial Science, and Prof Melanie Walker, Senior Research Professor and Director of the Centre for Research on Higher Education and Development, were given A-ratings.

Prof Finkelstein’s rating then made him the only A-rated researcher in ‘Probability and Statistics’ regarding Mathematical Sciences in the country. Prof Walker was evaluated and graded in the division for Research, Innovation Support and Advancement.

According to the NRF, A-rated researchers are “unequivocally recognised by their peers as leading international scholars in their field for the high quality and impact of their recent research outputs”.

 

The rating of individuals is based primarily on the quality and impact of their research over the past eight years.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept