Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2020 | Story Leonie Bolleurs | Photo Supplied
Prof Edilegnaw Wale Zegeye, who has joined the UFS Department of Agricultural Economics, believes university education is not just a requirement for learners to receive a certificate; it is a means to change their character, capacity, and reasoning.

Edilegnaw Wale Zegeye joined the Department of Agricultural Economics at the University of the Free State (UFS) as Professor of Agricultural Development Economics and Policy on 1 October 2020.

True to his belief that life is like riding a bicycle – to keep your balance, you must keep moving (Albert Einstein) – Prof Zegeye is not planning to wait for life to happen. He says that he is looking forward to engaging with his colleagues in the department regarding new challenges in the areas of teaching, research, and community engagement.

Teaching and learning

Prof Zegeye believes COVID-19 has made it necessary to come up with new ways and means of realising effective teaching and learning. He is convinced that even though online teaching has suddenly become the norm, many universities, including the UFS, will in future have to adopt some form of a hybrid, merging online with contact classes. 

“Given the uncharted territories we have to navigate, I foresee operational and content-related challenges in this area,” he says. 

These challenges, he believes, will require disrupting the status quo courageously, without neglecting the implications for teaching and learning outcomes.

Prof Zegeye is of the opinion that university education is not just a requirement for learners to receive a certificate. “It is a means to change their character, capacity, and reasoning. It is not about learning facts but enabling learners to think critically.”

His goal for his students is to enable them to master the subject matter content, not just memorise lecture notes to pass examinations. “Students should not expect everything from us, as teaching and learning is a two-way process. It is not a transfer of knowledge from a lecturer to students,” he says.

According to Prof Zegeye, success in teaching and learning is the outcome of the collective engagement of the lecturer, students, and the subject matter. He believes that was why Benjamin Franklin once said: “Tell me and I forget. Teach me and I remember. Involve me and I learn.”

Research

“In relation to research, the biggest challenge I anticipate is in terms of linking evidence-based knowledge with policy, implementation, and impact on the ground.”

He says the biggest challenge was to ensure that the knowledge generated is taken up by the relevant organisations and authorities in order to address the development-policy problem being examined. “This would, among other things, call for fixing the knowledge-action gap, addressing conflicts of interest, and engaging all the relevant stakeholders along, what I would call, the Research-Knowledge-Policy-Impact Nexus,” says Prof Zegeye. 

Prof Zegeye has more than twenty years of experience with higher education institutions, including the positions of Senior Lecturer, Associate Professor, Professor, and Honorary Professor (current appointment) in Agricultural Economics at the University of KwaZulu-Natal (UKZN). 

Although he spent several years at UKZN, he started his academic career at Alemaya University in Ethiopia. It was also at this university that he received a BSc in Agricultural Economics. He continued with his studies and obtained a master’s degree in Agricultural Development Economics from Wageningen University (the Netherlands), and later a doctoral degree in Agricultural and Natural Resources Economics from the University of Bonn. He obtained all degrees with distinction. 

Prof Zegeye has also gained valuable experience from working as an economist on the Genetic Resources Policy Initiative (GRPI) project of Bioversity International in Kenya. He has also been a consultant to, among others, the International Food Policy Research Institute and the International Livestock Research Institute. 

“Building on my experiences, I strongly believe that there is always room for improvement in whatever we do. If we all agree with that philosophy, all of us have a unique contribution to make to achieve excellence in what we do. There is a need to remind ourselves that excellence is not a destination; it is a journey that all of us need to take as a collective responsibility,” states Prof Zegeye. 

Published articles

To date, he has published more than 80 papers on water use in smallholder agriculture, agrobiodiversity conservation and technology adoption on smallholder farms, agricultural development policy, and impact assessment of development projects/programmes/policies. Prof Zegeye is also associate editor of the International Journal of Climate Change Strategies and Management and serves as a reviewer for various internationally accredited journals.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept