Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2020 | Story Leonie Bolleurs | Photo Supplied
Prof Edilegnaw Wale Zegeye, who has joined the UFS Department of Agricultural Economics, believes university education is not just a requirement for learners to receive a certificate; it is a means to change their character, capacity, and reasoning.

Edilegnaw Wale Zegeye joined the Department of Agricultural Economics at the University of the Free State (UFS) as Professor of Agricultural Development Economics and Policy on 1 October 2020.

True to his belief that life is like riding a bicycle – to keep your balance, you must keep moving (Albert Einstein) – Prof Zegeye is not planning to wait for life to happen. He says that he is looking forward to engaging with his colleagues in the department regarding new challenges in the areas of teaching, research, and community engagement.

Teaching and learning

Prof Zegeye believes COVID-19 has made it necessary to come up with new ways and means of realising effective teaching and learning. He is convinced that even though online teaching has suddenly become the norm, many universities, including the UFS, will in future have to adopt some form of a hybrid, merging online with contact classes. 

“Given the uncharted territories we have to navigate, I foresee operational and content-related challenges in this area,” he says. 

These challenges, he believes, will require disrupting the status quo courageously, without neglecting the implications for teaching and learning outcomes.

Prof Zegeye is of the opinion that university education is not just a requirement for learners to receive a certificate. “It is a means to change their character, capacity, and reasoning. It is not about learning facts but enabling learners to think critically.”

His goal for his students is to enable them to master the subject matter content, not just memorise lecture notes to pass examinations. “Students should not expect everything from us, as teaching and learning is a two-way process. It is not a transfer of knowledge from a lecturer to students,” he says.

According to Prof Zegeye, success in teaching and learning is the outcome of the collective engagement of the lecturer, students, and the subject matter. He believes that was why Benjamin Franklin once said: “Tell me and I forget. Teach me and I remember. Involve me and I learn.”

Research

“In relation to research, the biggest challenge I anticipate is in terms of linking evidence-based knowledge with policy, implementation, and impact on the ground.”

He says the biggest challenge was to ensure that the knowledge generated is taken up by the relevant organisations and authorities in order to address the development-policy problem being examined. “This would, among other things, call for fixing the knowledge-action gap, addressing conflicts of interest, and engaging all the relevant stakeholders along, what I would call, the Research-Knowledge-Policy-Impact Nexus,” says Prof Zegeye. 

Prof Zegeye has more than twenty years of experience with higher education institutions, including the positions of Senior Lecturer, Associate Professor, Professor, and Honorary Professor (current appointment) in Agricultural Economics at the University of KwaZulu-Natal (UKZN). 

Although he spent several years at UKZN, he started his academic career at Alemaya University in Ethiopia. It was also at this university that he received a BSc in Agricultural Economics. He continued with his studies and obtained a master’s degree in Agricultural Development Economics from Wageningen University (the Netherlands), and later a doctoral degree in Agricultural and Natural Resources Economics from the University of Bonn. He obtained all degrees with distinction. 

Prof Zegeye has also gained valuable experience from working as an economist on the Genetic Resources Policy Initiative (GRPI) project of Bioversity International in Kenya. He has also been a consultant to, among others, the International Food Policy Research Institute and the International Livestock Research Institute. 

“Building on my experiences, I strongly believe that there is always room for improvement in whatever we do. If we all agree with that philosophy, all of us have a unique contribution to make to achieve excellence in what we do. There is a need to remind ourselves that excellence is not a destination; it is a journey that all of us need to take as a collective responsibility,” states Prof Zegeye. 

Published articles

To date, he has published more than 80 papers on water use in smallholder agriculture, agrobiodiversity conservation and technology adoption on smallholder farms, agricultural development policy, and impact assessment of development projects/programmes/policies. Prof Zegeye is also associate editor of the International Journal of Climate Change Strategies and Management and serves as a reviewer for various internationally accredited journals.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept