Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Jan Swanepoel believes that the agricultural sector must be assisted in every possible way to shift its focus from mere subsistence farming, as is still the case in many parts of the world, to sustaining the lives of millions of people on the planet.

17 October is marked as International Day for the Eradication of Poverty by the United Nations (UN). 

The University of the Free State (UFS) is involved in several initiatives aimed at empowering communities to create a sustainable livelihood for themselves in the long run.

One of these initiatives includes a project to build competitiveness for communal farmers by developing the wool value chain in the Free State. 

The UFS Centre for Sustainable Agriculture, Rural Development and Extension (CENSARDE) submitted a proposal to the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM); their proposal was selected, and they were awarded a grant of US$300 000. 

Dr Jan Swanepoel, Senior Lecturer and Researcher at CENSARDE, says the world is moving from local and national markets towards a global system of trading. This means that neighbouring farmers working on small plots of land may be competing with large industrial farmers from another country in a single marketplace.

A drive to commercialise

He adds that in developing countries, there is increasing pressure on farmers to commercialise their operations. “In order to meet the drive for greater commercialisation, new skills must be developed to support farmers in becoming better entrepreneurs. Assistance towards infrastructure must be provided; and the needs of farmers, such as market access, must be identified and catered for.”

Dr Swanepoel points out that the agricultural sector must be assisted in every possible way to shift its focus from mere subsistence farming, as is still the case in many parts of the world, to sustaining the livelihoods of millions of people on the planet. 

“As the agricultural sector starts to realise this more fundamental role and responsibilities with regard to production, new strategies can be conceived towards the enhancement of the socio-economic status of all role players in the agricultural sector,” he says.

One of the industries that agriculture in South Africa can expand on, is the wool industry. 

“China is the biggest buyer of South African wool. During lockdown, no wool from South Africa was exported to China, causing the price of wool to drop significantly. Fortunately, the markets have opened up, the excess wool from Australia has been absorbed, and China is buying wool at full capacity now. Even though the price of wool is 30% below the price of last year, the markets are reacting positively, showing a steady increase. Wool buyers believe that this trend will continue due to international market demand exceeding the supply,” says Dr Swanepoel.

He also believes the creation of niche products from the wool will add to the existing value chain, creating more jobs and an opportunity for enlarging the export market.

Profitable and sustainable venture

CENCARDE is involved in an attempt to transform communal woolgrowers’ production from an underachieving enterprise to a profitable, sustainable, and renewable venture to enhance the livelihoods of communal wool producers. 

“In addition, with the extension of the value chain directly to consumers, job creation and development plays a vital role in supporting the South African National Treasury’s strategy,” adds Dr Swanepoel.

This project is thus built around the commercialisation of wool production in the communal areas of the Free State, by developing strategies to be implemented concurrently in order to attempt to manage the various challenges faced by these growers. 

As part of this project, a centralised infrastructure hub will be established on the UFS experimental farm to support wool production and processing. Woolgrowers, sheepshearers, and men and women from the community will also be equipped with the necessary skills and knowledge to operate in the wool industry. Adding to these skills, members of the community will be taught entrepreneurial skills in different aspects of wool processing, such as knitting, making felt products, spinning, and weaving. 

Another helpful aspect of this project is linking the communal woolgrowers to markets, and in so doing, giving them a collaborative advantage.

Educational benefits

However, not only communal woolgrowers will benefit from this programme. It also has educational benefits, as the project is designed to incorporate research. According to Dr Swanepoel, CENSARDE is very committed and are using this project as a pilot to demonstrate the potential for a more multidisciplinary, multi-stakeholder approach to education, research, and development. Fifteen students will directly benefit from this project, including two PhD and three master’s students.

Also adding value to the project is the development of private partnerships in the form of the Dohne Merino Breed Society, commercial farmers, and other key wool marketing agencies – which will assist with technical matters and knowledge – as well as the Free State Department of Agriculture.

All participants strive for more profitable and competitive communal woolgrowers in a changing global wool market. The project is not another educational exercise but will equip woolgrowers to change their circumstances for the better.

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept