Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Jan Swanepoel believes that the agricultural sector must be assisted in every possible way to shift its focus from mere subsistence farming, as is still the case in many parts of the world, to sustaining the lives of millions of people on the planet.

17 October is marked as International Day for the Eradication of Poverty by the United Nations (UN). 

The University of the Free State (UFS) is involved in several initiatives aimed at empowering communities to create a sustainable livelihood for themselves in the long run.

One of these initiatives includes a project to build competitiveness for communal farmers by developing the wool value chain in the Free State. 

The UFS Centre for Sustainable Agriculture, Rural Development and Extension (CENSARDE) submitted a proposal to the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM); their proposal was selected, and they were awarded a grant of US$300 000. 

Dr Jan Swanepoel, Senior Lecturer and Researcher at CENSARDE, says the world is moving from local and national markets towards a global system of trading. This means that neighbouring farmers working on small plots of land may be competing with large industrial farmers from another country in a single marketplace.

A drive to commercialise

He adds that in developing countries, there is increasing pressure on farmers to commercialise their operations. “In order to meet the drive for greater commercialisation, new skills must be developed to support farmers in becoming better entrepreneurs. Assistance towards infrastructure must be provided; and the needs of farmers, such as market access, must be identified and catered for.”

Dr Swanepoel points out that the agricultural sector must be assisted in every possible way to shift its focus from mere subsistence farming, as is still the case in many parts of the world, to sustaining the livelihoods of millions of people on the planet. 

“As the agricultural sector starts to realise this more fundamental role and responsibilities with regard to production, new strategies can be conceived towards the enhancement of the socio-economic status of all role players in the agricultural sector,” he says.

One of the industries that agriculture in South Africa can expand on, is the wool industry. 

“China is the biggest buyer of South African wool. During lockdown, no wool from South Africa was exported to China, causing the price of wool to drop significantly. Fortunately, the markets have opened up, the excess wool from Australia has been absorbed, and China is buying wool at full capacity now. Even though the price of wool is 30% below the price of last year, the markets are reacting positively, showing a steady increase. Wool buyers believe that this trend will continue due to international market demand exceeding the supply,” says Dr Swanepoel.

He also believes the creation of niche products from the wool will add to the existing value chain, creating more jobs and an opportunity for enlarging the export market.

Profitable and sustainable venture

CENCARDE is involved in an attempt to transform communal woolgrowers’ production from an underachieving enterprise to a profitable, sustainable, and renewable venture to enhance the livelihoods of communal wool producers. 

“In addition, with the extension of the value chain directly to consumers, job creation and development plays a vital role in supporting the South African National Treasury’s strategy,” adds Dr Swanepoel.

This project is thus built around the commercialisation of wool production in the communal areas of the Free State, by developing strategies to be implemented concurrently in order to attempt to manage the various challenges faced by these growers. 

As part of this project, a centralised infrastructure hub will be established on the UFS experimental farm to support wool production and processing. Woolgrowers, sheepshearers, and men and women from the community will also be equipped with the necessary skills and knowledge to operate in the wool industry. Adding to these skills, members of the community will be taught entrepreneurial skills in different aspects of wool processing, such as knitting, making felt products, spinning, and weaving. 

Another helpful aspect of this project is linking the communal woolgrowers to markets, and in so doing, giving them a collaborative advantage.

Educational benefits

However, not only communal woolgrowers will benefit from this programme. It also has educational benefits, as the project is designed to incorporate research. According to Dr Swanepoel, CENSARDE is very committed and are using this project as a pilot to demonstrate the potential for a more multidisciplinary, multi-stakeholder approach to education, research, and development. Fifteen students will directly benefit from this project, including two PhD and three master’s students.

Also adding value to the project is the development of private partnerships in the form of the Dohne Merino Breed Society, commercial farmers, and other key wool marketing agencies – which will assist with technical matters and knowledge – as well as the Free State Department of Agriculture.

All participants strive for more profitable and competitive communal woolgrowers in a changing global wool market. The project is not another educational exercise but will equip woolgrowers to change their circumstances for the better.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept