Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Jan Swanepoel believes that the agricultural sector must be assisted in every possible way to shift its focus from mere subsistence farming, as is still the case in many parts of the world, to sustaining the lives of millions of people on the planet.

17 October is marked as International Day for the Eradication of Poverty by the United Nations (UN). 

The University of the Free State (UFS) is involved in several initiatives aimed at empowering communities to create a sustainable livelihood for themselves in the long run.

One of these initiatives includes a project to build competitiveness for communal farmers by developing the wool value chain in the Free State. 

The UFS Centre for Sustainable Agriculture, Rural Development and Extension (CENSARDE) submitted a proposal to the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM); their proposal was selected, and they were awarded a grant of US$300 000. 

Dr Jan Swanepoel, Senior Lecturer and Researcher at CENSARDE, says the world is moving from local and national markets towards a global system of trading. This means that neighbouring farmers working on small plots of land may be competing with large industrial farmers from another country in a single marketplace.

A drive to commercialise

He adds that in developing countries, there is increasing pressure on farmers to commercialise their operations. “In order to meet the drive for greater commercialisation, new skills must be developed to support farmers in becoming better entrepreneurs. Assistance towards infrastructure must be provided; and the needs of farmers, such as market access, must be identified and catered for.”

Dr Swanepoel points out that the agricultural sector must be assisted in every possible way to shift its focus from mere subsistence farming, as is still the case in many parts of the world, to sustaining the livelihoods of millions of people on the planet. 

“As the agricultural sector starts to realise this more fundamental role and responsibilities with regard to production, new strategies can be conceived towards the enhancement of the socio-economic status of all role players in the agricultural sector,” he says.

One of the industries that agriculture in South Africa can expand on, is the wool industry. 

“China is the biggest buyer of South African wool. During lockdown, no wool from South Africa was exported to China, causing the price of wool to drop significantly. Fortunately, the markets have opened up, the excess wool from Australia has been absorbed, and China is buying wool at full capacity now. Even though the price of wool is 30% below the price of last year, the markets are reacting positively, showing a steady increase. Wool buyers believe that this trend will continue due to international market demand exceeding the supply,” says Dr Swanepoel.

He also believes the creation of niche products from the wool will add to the existing value chain, creating more jobs and an opportunity for enlarging the export market.

Profitable and sustainable venture

CENCARDE is involved in an attempt to transform communal woolgrowers’ production from an underachieving enterprise to a profitable, sustainable, and renewable venture to enhance the livelihoods of communal wool producers. 

“In addition, with the extension of the value chain directly to consumers, job creation and development plays a vital role in supporting the South African National Treasury’s strategy,” adds Dr Swanepoel.

This project is thus built around the commercialisation of wool production in the communal areas of the Free State, by developing strategies to be implemented concurrently in order to attempt to manage the various challenges faced by these growers. 

As part of this project, a centralised infrastructure hub will be established on the UFS experimental farm to support wool production and processing. Woolgrowers, sheepshearers, and men and women from the community will also be equipped with the necessary skills and knowledge to operate in the wool industry. Adding to these skills, members of the community will be taught entrepreneurial skills in different aspects of wool processing, such as knitting, making felt products, spinning, and weaving. 

Another helpful aspect of this project is linking the communal woolgrowers to markets, and in so doing, giving them a collaborative advantage.

Educational benefits

However, not only communal woolgrowers will benefit from this programme. It also has educational benefits, as the project is designed to incorporate research. According to Dr Swanepoel, CENSARDE is very committed and are using this project as a pilot to demonstrate the potential for a more multidisciplinary, multi-stakeholder approach to education, research, and development. Fifteen students will directly benefit from this project, including two PhD and three master’s students.

Also adding value to the project is the development of private partnerships in the form of the Dohne Merino Breed Society, commercial farmers, and other key wool marketing agencies – which will assist with technical matters and knowledge – as well as the Free State Department of Agriculture.

All participants strive for more profitable and competitive communal woolgrowers in a changing global wool market. The project is not another educational exercise but will equip woolgrowers to change their circumstances for the better.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept