Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 October 2020 | Story Andre Damons | Photo Supplied
Dr Marankie Swinfen was awarded the Dean’s medal for achieving the best results in respect of a master’s degree in the Faculty of Health Sciences during the year 2019.

Dr Marankie Swinfen, who was awarded the Dean’s medal in the faculty of Health Sciences of the University of the Free State (UFS) at the recent virtual graduation (6-9 October 2020), says she was completely surprised by this award and was unaware that it existed. 

Dr Swinfen, who teaches Clinical Skills to second- and third-year medical students at the UFS and received a master’s degree in Health Professions Education, says the road to obtaining her qualification was quite a bumpy ride and difficult at times.

The Dean’s medal is awarded to the student who achieved the best results in respect of a master’s degree in the Faculty of Health Sciences during the year 2019. 

“Through God’s grace, the patience of my supervisors and an eleventh hour burst of energy I managed to reach the goal,” says Dr Swinfen. 

In her dissertation title; A Student Review of Doctor Patient Communication Skills Training in The UFS Undergraduate Medical Programme she asked medical students to review the training of doctor-patient communication skills during their undergraduate programme. 

Students gave valuable insights

Says Dr Swinfen: “I was pleasantly surprised at the response rate and the students’ level of engagement in the study. They gave valuable insights into the strengths of the communication skills training and highlighted areas where the training can be improved. For instance, they accentuated the need to have more practical training in breaking bad news and managing language and cultural differences in the consultation.” 

According to Dr Swinfen she undertook this study because as an undergraduate medical student, she never formally received training in doctor-patient communication. During her postgraduate diploma in Palliative Medicine, they had role-play sessions in breaking bad news, which opened her eyes to the importance of practical, interactive communication skills training. 

“I wanted to explore how useful students find aspects of doctor-patient communication skills training in the current UFS undergraduate medical training programme.”

Challenges on her journey 

Dr Swinfen says the biggest struggle for her during her studies, was self-discipline and setting aside enough time for research. She also had formal modules to complete and found that she would devote more time and energy to these modules than to research (Especially due to having inspirational teachers such as Dr Chantel van Wyk at HPE).  

“I also had become very rusty in terms of research methodology and had to start again with the ‘ABC’ of research. I was greatly helped by Postgraduate School courses such as using Microsoft Word in research. My supervisors, Prof Mathys Labuschagne and Prof Gina Joubert had immense patience with me and saw potential in my research that I could often not see myself.”


News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept