Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Vicky Simpson believes our current reality is temporary and that we are more than capable to adjust, regardless of our understanding of what ‘normal’ is.

Vicky Simpson is Development Officer in the Office for Institutional Advancement at the university, where one of her main focus areas is to secure funding for UFS projects and raising funds for student bursaries and the No Student Hungry Programme. 

Simpson, an energetic and proactive person who has a passion for interventions that are humanitarian in nature, says she considers herself lucky to be able to align that which she is passionate about with her career, where she can promote the greater good and create opportunities for others.

“I love working with people and I draw energy from interpersonal interactions. I am an extrovert.”

But the strict lockdown regulations implemented by government in March due to the COVID-19 pandemic, which limited personal interaction – dampened Simpson’s enthusiasm for life.

“The side effect was constant snacking – given that the fridge was next to my temporary office. My energy took a dip and I gained weight.”

Keeping positive

“My partner being a frontline medical worker added additional challenges, given that we had to implement strict routines to keep COVID-19 out of our home. We were both rather drained and had to find ways to keep each other positive.”

Practical as she is, Simpson determined that she craved interaction and fresh air.

“I decided to do video calls with friends and family. This made up for the lack of social contact.”

For fresh air, Simpson started a light exercise routine once South Africans were allowed to go for walks, and gradually increased it. “Exercise and healthy nutritional choices lifted my mood. Basically, I used my time wisely and decided to change my routine for the better,” Simpson adds.

She says the key is to set small goals and to take things slowly. “One small victory at a time.” 

Healthy choices

The pandemic challenged Simpson to embrace a more active lifestyle. “The situation forced me to do introspection, self-care, and nurturing,” she says.

Her advice to others is to make the tough choices. “It is easy to get caught up in a routine where you can’t find the time to go for a walk. Evaluate your routine. Start slowly. And do not forget to drink lots of water, take your vitamins, and eat healthier,” she adds.

Simpson explains that she started off by walking only 30 minutes every second day. But once the serotonin bug bit her, she was hooked. Now she goes for a 5 km run at least once a week. “I simply want to feel healthier again,” she says.

She believes our current reality is temporary and she is looking forward to life after lockdown. 

And what is she looking forward to most? Seeing other people smile. “Yes, I randomly smile at strangers. They always smile back. There is not enough love in this world and small things go a long way,” she says.


News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept