Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Vicky Simpson believes our current reality is temporary and that we are more than capable to adjust, regardless of our understanding of what ‘normal’ is.

Vicky Simpson is Development Officer in the Office for Institutional Advancement at the university, where one of her main focus areas is to secure funding for UFS projects and raising funds for student bursaries and the No Student Hungry Programme. 

Simpson, an energetic and proactive person who has a passion for interventions that are humanitarian in nature, says she considers herself lucky to be able to align that which she is passionate about with her career, where she can promote the greater good and create opportunities for others.

“I love working with people and I draw energy from interpersonal interactions. I am an extrovert.”

But the strict lockdown regulations implemented by government in March due to the COVID-19 pandemic, which limited personal interaction – dampened Simpson’s enthusiasm for life.

“The side effect was constant snacking – given that the fridge was next to my temporary office. My energy took a dip and I gained weight.”

Keeping positive

“My partner being a frontline medical worker added additional challenges, given that we had to implement strict routines to keep COVID-19 out of our home. We were both rather drained and had to find ways to keep each other positive.”

Practical as she is, Simpson determined that she craved interaction and fresh air.

“I decided to do video calls with friends and family. This made up for the lack of social contact.”

For fresh air, Simpson started a light exercise routine once South Africans were allowed to go for walks, and gradually increased it. “Exercise and healthy nutritional choices lifted my mood. Basically, I used my time wisely and decided to change my routine for the better,” Simpson adds.

She says the key is to set small goals and to take things slowly. “One small victory at a time.” 

Healthy choices

The pandemic challenged Simpson to embrace a more active lifestyle. “The situation forced me to do introspection, self-care, and nurturing,” she says.

Her advice to others is to make the tough choices. “It is easy to get caught up in a routine where you can’t find the time to go for a walk. Evaluate your routine. Start slowly. And do not forget to drink lots of water, take your vitamins, and eat healthier,” she adds.

Simpson explains that she started off by walking only 30 minutes every second day. But once the serotonin bug bit her, she was hooked. Now she goes for a 5 km run at least once a week. “I simply want to feel healthier again,” she says.

She believes our current reality is temporary and she is looking forward to life after lockdown. 

And what is she looking forward to most? Seeing other people smile. “Yes, I randomly smile at strangers. They always smile back. There is not enough love in this world and small things go a long way,” she says.


News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept