Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Vicky Simpson believes our current reality is temporary and that we are more than capable to adjust, regardless of our understanding of what ‘normal’ is.

Vicky Simpson is Development Officer in the Office for Institutional Advancement at the university, where one of her main focus areas is to secure funding for UFS projects and raising funds for student bursaries and the No Student Hungry Programme. 

Simpson, an energetic and proactive person who has a passion for interventions that are humanitarian in nature, says she considers herself lucky to be able to align that which she is passionate about with her career, where she can promote the greater good and create opportunities for others.

“I love working with people and I draw energy from interpersonal interactions. I am an extrovert.”

But the strict lockdown regulations implemented by government in March due to the COVID-19 pandemic, which limited personal interaction – dampened Simpson’s enthusiasm for life.

“The side effect was constant snacking – given that the fridge was next to my temporary office. My energy took a dip and I gained weight.”

Keeping positive

“My partner being a frontline medical worker added additional challenges, given that we had to implement strict routines to keep COVID-19 out of our home. We were both rather drained and had to find ways to keep each other positive.”

Practical as she is, Simpson determined that she craved interaction and fresh air.

“I decided to do video calls with friends and family. This made up for the lack of social contact.”

For fresh air, Simpson started a light exercise routine once South Africans were allowed to go for walks, and gradually increased it. “Exercise and healthy nutritional choices lifted my mood. Basically, I used my time wisely and decided to change my routine for the better,” Simpson adds.

She says the key is to set small goals and to take things slowly. “One small victory at a time.” 

Healthy choices

The pandemic challenged Simpson to embrace a more active lifestyle. “The situation forced me to do introspection, self-care, and nurturing,” she says.

Her advice to others is to make the tough choices. “It is easy to get caught up in a routine where you can’t find the time to go for a walk. Evaluate your routine. Start slowly. And do not forget to drink lots of water, take your vitamins, and eat healthier,” she adds.

Simpson explains that she started off by walking only 30 minutes every second day. But once the serotonin bug bit her, she was hooked. Now she goes for a 5 km run at least once a week. “I simply want to feel healthier again,” she says.

She believes our current reality is temporary and she is looking forward to life after lockdown. 

And what is she looking forward to most? Seeing other people smile. “Yes, I randomly smile at strangers. They always smile back. There is not enough love in this world and small things go a long way,” she says.


News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept