Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

#Women'sMonth: Long hours in wind and cold weather help to reconstruct Marion Island’s glacial history
2017-08-10

 Description: Liezel Rudolph  Tags: Liezel Rudolph, Process Geomorphology, Marion Island, periglacial geomorphology, Department of Geography  

Liezel Rudolph, lecturer for second-year students in Process
Geomorphology at the University of the Free State (UFS).
Photo: RA Dwight

Liezel Rudolph, a lecturer for second-year students in Process Geomorphology, aims to reconstruct the glacial history of Marion Island through cosmogenic nuclide dating techniques. She is interested in periglacial geomorphology, a study of how the earth’s surface could be formed by ice actions (freezing and thawing of ice).

Liezel is a lecturer in the Department of Geography at the university and is researching landscape development specifically in cold environments such as Antarctica, the Sub-Antarctic islands, and high mountain areas. “My involvement with periglacial geomorphology is largely due to academic giants who have carved a pathway for South Africans,” says Liezel.

Liezel visited Marion Island for the first time during her honours year in 2011, when she investigated the impact of seals on soil conditions and vegetation. Three years later, she visited Antarctica to study rock glaciers.

The challenge of the job
A workday in Antarctica is challenging. “Our time in the field is very limited, so you have to work every possible hour when the weather is not life-threatening: from collecting soil samples, to measuring soil temperature and downloading data, we measure polygons and test the hardness of rocks. The only way to get the amount of work done, is to work long hours in wind and rain with a positive and competent team! We take turns with chores: the person carrying the notebook is usually the coldest, while the rest of us are stretching acrobatically over rocks to get every nook and cranny measured and documented.”

A typical workday
Liezel describes a typical workday: “Your day starts with a stiff breakfast (bacon and eggs and a bowl of oats) and great coffee! After that comes the twenty-minute dressing session: first a tight-fitting under-layer, a middle layer – sweater and T-shirt, and then the outer windbreaker (or a quilt jacket on an extra cold day). Then you start applying sunscreen to every bit of open face area. Beanie on, sunglasses, two pairs of socks, two pairs of gloves. The few kilograms of equipment, one vacuum flask containing an energy drink, one vacuum flask containing drinking water (it would freeze in a regular bottle), and a chocolate bar and piece of biltong for lunch. After this, we drive (on snowmobiles) or fly (in helicopter) to our study area for about eight hours of digging, measuring, downloading, testing and chopping. Back at the base and after a long and tiresome undressing session, we move to the lab with all our data to make sure that it is downloaded safely and captured onto a database. Afterwards, depending on the day of the week, we enjoy a good meal. If you are lucky, such a typical day will coincide with your shower day. We can only shower every second day due to the energy-intensive water production (we have to melt snow) and the sewage system (all the water has to be purified before it could be returned to the environment). Then you grab your eye shield (since the sun is not sinking during summer) and take a nap before the sun continues to shine into the next day.”

Theoretical knowledge broadened 
“Going into the field (whether island or mountains) provides me with an opportunity to test geomorphic theories. Without experience in the field, my knowledge will only be limited to book knowledge. With practical experience, I hope to broaden my knowledge so that I could train my students from experience rather than from a textbook,” says Liezel.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept