Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

UFS DiMTEC will help compile national emergency management system
2017-10-11

Description: UFS DiMTEC will help compile national emergency management system Tags: UFS DiMTEC will help compile national emergency management system

Preparedness and response are the two most important aspects of managing disaster when it strikes. Prof Andries Jordaan, Head of the Disaster Management Training and Education Centre for Africa (DiMTEC) at the University of the Free State (UFS) recently attended an incident command course in California in the US.

Learning from US disaster management systems
More than 20 specialists from 17 countries attended the course where participants were introduced to the National Incident Management System (NIMS) in the US. The system was implemented after lessons learned during 9/11. “According to the NIMS structure, all government organisations at all levels as well as emergency agencies had to standardise terminology and systems,” said Prof Jordaan.

The professor also had the opportunity to visit among others the Federal Emergency Management (FEMA) headquarters in California, some State Coordination Centres as well as several other disaster management centres. He also had the chance to shadow an Incident Management Team (IMT) during active operations.

Providing training for local disaster management
Insight gained during this course, as well as Prof Jordaan’s experience as senior officer in the South African National Defence Reserve Forces, provided him the necessary background to conduct training and give assistance in terms of disaster management.

Through DiMTEC Prof Jordaan will assist the National Disaster Management Centre with the implementation of a national emergency management system. He will also provide training for incident management teams.

“DiMTEC is currently also in the process of developing a Master module in disaster response. Command and control and Incident Command will form a sub-module in the disaster response module,” he said.

From South Africa, Prof Jordaan was joined on the course by General Elias Mpumelelo Mahlabane from the South African Police Services, who is responsible for disaster management in the SAPS. Savage Breytenbach, a trainer in rural fire fighting who assists Mangaung with command and control structures, also attended the course.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept