Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

DiMTEC hosts second conference on disaster risk reduction
2009-06-02

 
Dr Anthony Turton, the Director: TouchStone Resources (Pty) Ltd. delivered the opening address at this year’s two-day annual international conference on disaster risk reduction that was presented by the Disaster Management Training and Education Centre for Africa (DiMTEC) at the University of the Free State (UFS).

In his presentation: Sitting on the horns of a dilemma: South Africa and its strategic water supply, he said: “We have simply reached the limit of the water resources in South Africa. On the one hand, we deal with the quantity dilemma in terms of strategic water storage. South Africa and Zimbabwe counts under the top 20 countries in the world in terms of dams built. We can only build about ten more dams.”

“On the other hand, we must deal with quantity. Previous solutions are not future solutions. When water is recycled, hormones such as oestrogen do not disappear. We must become creative and do something else,” he said.

“Science can make a difference. The UFS is well placed in terms of its groundwater research. Universities must invest in the necessary technology because the testing of toxins is essential. We must work in ways to prevent toxins from re-entering the water cycle,” he said.

A number of international speakers such as Dr Fabrice Renaud, Associate Director at the United Nations University’s Institute for Environment and Human Security (UNU-EHS) in Bonn, Germany, Dr Eugene Poolman, Chief Forecaster: Disaster Risk Reduction, South African Weather Service, and Prof. Rob Bragg from the Department of Microbial, Biochemical and Food Biotechnology at the UFS, attended the conference, as well as attendees from 11 different countries.

At the conference were, from the left: Mr Andries Jordaan, Director: DiMTEC at the UFS; Dr Ing Jörn Birkmann, Head of Section: Vulnerability Assessment at the United Nations University’s Institute for Environment and Human Security (UNU-EHS); Dr Anthony Turton, Director: TouchStone Resources (Pty) Ltd.; and Dr Fabrice Renaud, Associate Director: UNU-EHS.
Photo: Supplied

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept