Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

UFS takes the lead in solar heating in the Free State
2010-06-03

In the “engine room” of the solar heating system of the Vergeet-my-nie Residence with the big hot water tanks in the background. From the left are Mr Anton Calitz, Electrical Engineer of the UFS, and Mr Nico Janse van Renburg, Manager: Physical Planning at the UFS.
Photo: Leatitia Pienaar


The University of the Free State (UFS) took a further step in reducing its carbon footprint and its dependency on coal fired electricity with the installation of a solar heating system at one of its residences. The contractor handed the system over to the UFS on Wednesday, 2 June 2010.

The system installed at the Vergeet-my-nie Residence is the first commercial solar water heating project in both Bloemfontein and at the UFS. It is estimated that it will provide in 70% of the residence’s energy needs and save approximately R101 000 per annum in electricity cost. The project was completed at a cost of R2,4 million.

More residences at the UFS will be refurbished with solar systems as the existing heating systems in the rest of the twenty residences are due for replacement.

The energy crisis of 2008, and the challenges and necessity to reduce the use of electricity, sparked the initiative around the installation of solar heating systems at the UFS. The UFS is the second largest energy user in Bloemfontein.

Mr Nico Janse van Rensburg, Manager: Physical Planning at the UFS, says the management of the UFS saw an opportunity in the crisis and pro-actively embarked to become a market leader. Solar heating would not only alleviate the electricity problem of South Africa, but will impact the ever increasing electricity bill of the UFS.

“Protecting the environment and being on the cutting edge of technology are core issues to the UFS,” says Janse van Rensburg. “We are an educational institution and take pride in practicing what we preach.”

Media Release
Issued by: Lacea Loader
Director: Strategic Communication (acting)
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za  
3 June 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept