Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

UFS unveils new HPC cluster
2011-04-04

Prof. Jonathan Jansen, Prof. Theuns Verschoor and staff of the UFS ICT department at the unveiling of the HPC cluster

Our university has unveiled a brand-new multimillion-rand High Performance Computing (HPC) cluster, which promises to enhance the way research is done at our university.

The new HPC cluster is a super powerful computing cluster, and already has 28 users from six university departments using it to speed up and simplify their research. The cluster of more than R2,7 million was unveiled in March 2011.
 
It boasts an incredible 800 processing cores and special high-speed data-transfer technology, to make even the most expensive home PC look like a stone-age relic.
Prof. Janse Tolmie, Senior Director: Information and Communication Technology Services (ICT Services) at the UFS, says the cluster is used to simulate experiments and their outcome electronically, using advanced software and the high processing power of the cluster.
 
The cluster is especially useful to researchers in the Chemistry, Bio-chemistry and Medical Physics departments. Prof. Tolmie says these simulations are an internationally recognised means of conducting research and it is very important for a research institution to have access to such a facility.
 
In the past, many research articles have been published by UFS researchers, based on research done using the previous incarnation of an HPC cluster at our university.
Prof. Tolmie says the cluster can also be connected to clusters at other universities and research facilities to form national or international HPC grids.
 
This will enable researchers elsewhere to access the massive processing power that UFS researchers now have at their fingertips.
 
 
Media Release
30 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept