Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

Professor’s research part of major global programme
2011-04-04

 

Prof. Zakkie Pretorius, professor in Plant Pathology in the Department of Plant Sciences at our university

Research by Zakkie Pretorius, professor in Plant Pathology in the Department of Plant Sciences at our university, has become part of Phase II of a mayor global project to combat deadly strains of a wheat pathogen that poses a threat to global food security.

Prof. Pretorius focuses on the identification of resistance in wheat to the stem rust disease and will assist breeders and geneticists in the accurate phenotyping of international breeding lines and mapping populations. In addition, Prof. Pretorius will support scientists from Africa with critical skills development through training programmes. During Phase I, which ends in 2011, he was involved in pathogen surveillance in Southern Africa and South Asia.
 
The Department of International Development (DFID) in the United Kingdom and the Bill and Melinda Gates Foundation will invest $40 million over the next five years in the global project led by the Cornell University. The project is aimed at combating deadly strains of Ug99, an evolving wheat pathogen that is a dangerous threat to global food security, especially in the poorest nations. 
 
The Cornell University said in a statement, the grant made to the Durable Rust Resistance in Wheat (DRRW) project at Cornell will support efforts to identify new stem-rust resistant genes in wheat, improve surveillance, and multiply and distribute rust-resistant wheat seed to farmers and their families.
 
Researchers worldwide will be able to play an increasingly vital role in protecting wheat fields from dangerous new forms of stem rust, particularly in countries whose people can ill afford the economic impact of damage to this vital crop.
 
The Ug99 strain was discovered in Kenya in 1998, but are now also threatening major wheat-growing areas of Southern and Eastern Africa, the Central Asian Republics, the Caucasus, the Indian subcontinent, South America, Australia and North America.
 
Prof. Pretorius was responsible for the first description of this strain in 1999.
 
Among Cornell’s partners are national research centres in Kenya and Ethiopia, and scientists at two international agricultural research centres that focus on wheat, the Mexico-based International Maize and Wheat Improvement Center (known by its Spanish acronym as CIMMYT), and the International Center  for Agricultural Research in the Dry Areas (ICARDA), in Syria. Advanced research laboratories in the United States, Canada, China, Australia, Denmark and South Africa also collaborate on the project. The DRRW project now involves more than 20 leading universities and research institutes throughout the world, and scientists and farmers from more than 40 countries.


Media Release
28 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept