Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

UFS takes a leading role in nuclear medicine and technology
2011-12-06

 
Photo: Dr Glen Taylor

The University of the Free State (UFS) continues to play an active role in the field of Nuclear Medicine and the use of nuclear technology in the biosciences. Dr Glen Taylor, Director of Research Commercialisation and Business Development at the UFS, was recently elected chairperson of the board for the Nuclear Technologies in Medicine and the Biosciences Initiative (NTeMBI).

The UFS is currently one of three centres of excellence in the country identified by the Nuclear Energy Corporation South African (Necsa) to roll out the capacity development programme and increase technology coming from nuclear medicine and technology.
NTeMBI is a national technology platform that is managed by Necsa and supported by the Department of Science and Technology (DST). It functions as a high-level Research, Development and Innovation (RD&I) initiative that will implement new strategic initiatives relating to research and development on nuclear technologies in medicine and the biosciences on a local, regional and international level. 
 
One of the roles Dr Taylor will perform as Chairperson of the board of NTeMBI, is to enhance the exposure of nuclear technology in medicine and the biosciences. Dr Taylor says the aim is to increase the skills base in South Africa. “I realise it is one of the scare skills in the country.” 
 
The UFS already received a significant amount of funding from the grant of R4 million per annum made available from the Department of Science and Technology (DST) to implement NTeMBI projects.  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept