Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

Justin J. Kennedy leads new Programme in Personal Excellence
2012-05-08

 

Justin J. Kennedy
Photo: Leatitia Pienaar
8 May 2012

Justin J. Kennedy has been appointed as the Manager of the new Programme in Personal Excellence. The programme is hosted in the Centre for Business Dynamics, the commercial unit of the Business School.

He studied at Rhodes University and the University of the Western Cape (UWC) and his research has been published in various health-related publications. His D.Psych. at the University of California migrated into a Ph.D. with research partner DiscoveryHealth.

While in New York, he was part of the research laboratory Helicor that developed the world’s first hand-held medical device for measuring heart-rate variability of the peripheral nervous system.  This device forms part of the programmes offered to control stress and improve cognitive performance as per clinical trials at the UCT Department of Human Biology. This programme evolved into developing the M.Sc. course work on occupational stress and Ph.D. student supervision.

The programme will launch during the university's Beneficiary Programme for Academic Heads of Department, and will focus on the neuro-economics of stress resilience.

Justin’s most recent research is peer review for an international leadership journal where he has presented evidence on how people can improve their cognitive performance and working memory by building functional stress resilience. The overall aim of the programme is to not only reduce stress, but to improve ability to be excellent at work.  Clinical results have shown it is beneficial for performance anxiety, insomnia, migraine, hypertension control and improved ability at cognitive tasks.  The aim of his work is to ensure that simple and practical skills provide academics, students and corporate participants with enduring, functional techniques that are easily applied in their working lives.

The programme has three roles: to offer services that equip students and academics; consulting services to corporate clients, financial groups and private hospitals; and publication of results in peer-reviewed journals. 

This initiative also envisages offering a postgraduate qualification and selected coaching qualifications.  For more info about corporate interventions and programmes open to students and academics, please contact Ansie Barnard at barnardam@ufs.ac.za.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept