Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

Researchers focus on parrots, poultry and phage therapy
2014-10-10

Photo: en.wikipedia

Veterinary biotechnology focuses on microbial and molecular biological approaches to veterinary illnesses. The group working on veterinary biotechnology research at the University of the Free State (UFS) consists of two academic staff members, Prof Rob Bragg and Dr Charlotte Boucher, two post-doctoral fellows, Drs Chris Theron and Arina Hitzeroth, five PhD and three honours students.

The group has three research focus areas.

Dr Boucher says, “Our main focus area is infectious coryza in poultry, caused by the bacterium Avibacterium paragalliarum. The aim is the control of the disease, mainly through improvement of vaccines, understanding the immune response and improved biosecurity. A key objective is improving methods for serotyping; studying of selected surface antigens and investigating the influence recently discovered bacteriophages might have on virulence. We have co-operative projects with research groups in China, India and Israel.

“The second focus area is an expression system co-developed with the National Institute for Agronomic Research (INRA), France. The flagship project is the expression of the coat protein gene of the beak and feather disease virus, a disease affecting parrots, currently threatening the endangered Cape parrot. This system has led to the development of serological tests, currently under patenting. The application of this system has been extended to human-related diseases, with two interdisciplinary projects underway, co-working with Profs Muriel Meiring and Felicity Burt. Prof Meiring is working on diseases causing bleeding disorders, such as blood-clotting impairment, while Prof Burt is working on viral infections causing haemorrhagic (bleeding) disorders.

“We are also researching disease control in a post-antibiotic era, investigating the potential of phage-therapy by targeting and destroying pathogenic islands within a host, with reduced side-effects on the host itself.

“We have smaller projects, including an interdisciplinary project with Zoology, looking at the protein profile of amphibian (frog) secretions with the focus on antimicrobial activity, as these secretions assist with protecting amphibian skin against infections.”  


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept