Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

Researcher in Plant Breeding one of nine women on the African continent to receive acknowledgement for work in food security
2015-08-04

 
 Prof Maryke Labuschagne

Prof Maryke Labuschagne, Plant Breeding researcher in the Department of Plant Sciences at the University of the Free State (UFS), is one of only nine women on the African continent to receive the prestigious ‘Country Lifetime Achiever Award’ from Africa’s Most Influential Women in Business and Government Programme (MIW) this year.

During a breakfast event, CEO Communications recognised the Most Influential Women in SADC South who are Building Nations. The event took place at the Vodacom Dome in Midrand on 28 July 2015.

She received the award for her commitment and continuous contributions to food security. “I am concerned about this. We need to develop people who can go into Africa to work together for food security on the continent,” says Prof Labuschagne.

Prof Labuschagne
and her students’ research focuses on the genetic improvement of food security crops in Africa, including such staples as maize and cassava. “These crops are genetically improved for yield, drought tolerance, disease, and insect resistance, as well nutritional value.”

“Food security is one of the key factors for stability and prosperity on the continent,” she says.

Apart from the fact that her research is helping to provide food for thousands of people on the continent, she is also an NRF-rated researcher, and author or co-author of over 160 articles in accredited journals.

This is not the firstaward that Prof Labuschagne has received for her work. In 2008, she was chosen as the National Agriculturalist of the Year by the Agricultural Writers Association of South Africa. In 2012, she received the Researcher of the Year award from Grain South Africa, as well as the African Union’s Kwame Nkrumah Science Award for Life Sciences on the continent. 

The Country Lifetime Achiever Award is a prestigious award that recognises and honours the lifelong efforts, achievements, and contributions by individuals in their local communities. This recognition covers all sectors and countries, to create a platform where the work and involvement of extraordinary people can be displayed and noted.

About the award, Prof Labuschagne says: “It is always great to be recognised for your work.”

Elana Meyer (athlete) and Thuli Madonsela (Public Protector and advocate) have also received awards from the programme this year.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept