Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

New Genetics building on Bloemfontein Campus spirals into new frontiers
2015-09-11

On Thursday 3 September 2015, the Department of Genetics hosted the official opening of its new offices on the Bloemfontein Campus of the University of the Free State (UFS).

Prof Jonathan Jansen, Vice-Chancellor and Rector of the UFS, Prof Neil Heideman, Dean of the Faculty of Natural and Agricultural Sciences, and Prof Paul Grobler, Head of the Department of Genetics cut the ribbon, symbolising the opening of this building with its state-of-the-art facilities.

The new genetics building boasts a new administration block with a reception area, seven offices, a small committee room, and a seminar room for 50 people. Furthermore, the undergraduate laboratory block provides a laboratory for 150 students. The research block has facilities for 30 researchers.

This building also hosts a chemical waste sorting and storage facility. This is a first for the university.

Several sites were investigated for the new building, but due to its size and envisaged second phase, a “green fields” site was found on the western side of the campus. The main entrance caters for visitors from the north, students on foot, and those using the parking area in front of the library. The secondary south entrance is for those who use the dedicated parking area south of the building. The link between these two entrances is the spine of the building, a helix with services/buildings spaced on either side. The helix will be extended in the second phase to keep the circulation and linkage of buildings as simple as possible.

In his opening speech, Prof Grobler gave a breakdown of the history of the Department of Genetics. Today, this department, which opened its doors at the UFS in 1960, is proud of its 131 students and 46 honours students.

According to Major-General Edward Ngokha, Head of the Forensic Science Laboratory, students who graduate from the UFS in the field of genetics make excellent employees. The Forensic Science Laboratory has employed 25 honours students since the BSc Honours degree in Genetics was implemented in 2010.

“The UFS delivers education of high quality and high standards. Thank you for your contribution toward fighting crime by delivering well-prepared, committed employees,” said Major-General Ngokha.

The department presents programmes on population conservation genetics, plant molecular genetics, cytogenetics, forensic genetics, forensic science, human genetics, and behavioural genetics.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept