Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

Louzanne Coetzee breaks 16-year-old world record
2016-03-24

Description: Louzanne Coetzee kampioen Tags: Louzanne Coetzee kampioen

Louzanne Coetzee (left) running the 5 000 m at the Nedbank National Championships at the Free State Athletics stadium with her guide, Khotatso Mokone (right)
Photo: Celeste Klopper Photography

Whether it’s the 5 000 m or the 1 500 m, Louzanne Coetzee is breaking records in all her races. Fans of the University of the Free State (UFS) student were elated at her triumph with the 5 000 m T11 world record at the Nedbank National Championships for the Physically Disabled on Wednesday 23 March 2016.

The record, which has stood for 16 years, was shattered by Coetzee’s stellar 19:17.06 performance. Sigita Markeviciene’s long-standing mark of 20:05.81, set at the 2000 Paralympics in Sydney, was bettered by 48.75 seconds when Coetzee and her guide, Khotatso Mokone, sprinted hand in hand past the finish line. 

Coetzee’s coach is as elated as the world-class athlete’s fans over her officially becoming the first totally blind female to clock sub-20 minute in the 5 000 m. "I am proud and grateful. She earned it through and through. She worked hard for this,” said Rufus Botha.

The experience was a surreal one for Coetzee. “It was unreal but it is exciting to be the fastest in Africa and the world. I could not have done it without the support system that I have,” she said.

"I have seldom met a student with the character and humanity of Louzanne Coetzee; she represents the best of campus and country, and is a stunning example of what we canal  achieve despite the great challenges of the present," said Prof Jonathan Jansen, Vice-Chancellor and Rector of the UFS.

New African record holder

Two days before breaking the 5 000 m world record, Coetzee set a new African record in the 1 500 m. She lowered the mark from 5:27:21 to 5:18:44, which placed her at the number nine spot in the world.

On Friday 18 March 2016 Coetzee had broken her own South African record when she ran 5 000 m in less than 20 minutes at the Free State Championships. However, the race is not an official (International Paralympic Committee) meeting, and hence remains unofficial.

What’s next?


The gold medallist is currently preparing for the Athletics Grand Prix to be held in Switzerland in May for which she is raising funds. If she is selected by SASCOC (South African Sports Confederation and Olympic Committee), her next stop is the Paralympic Games in Rio de Janeiro, which is just six months away.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept