Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

Monkey research attracts international attention
2016-07-11

Description: Monkey research attracts international attention  Tags: Monkey research attracts international attention

Prof Trudy Turner from the University of
Wisconsin-Milwaukee and Prof Paul Grobler
from the Department of Genetics at the
University of the Free State, together with one
of the students researching monkey genes.
Photo: Siobhan Canavan

For this year’s Summer School programme, Prof Paul Grobler, from the University of the Free State Department of Genetics focuses on research about the conflict between monkeys and humans in areas where monkeys are regarded as problem animals.

Global expert part of research

This year, Prof Grobler is hosting a group of students and lecturers from the United States of America (USA). The group includes Prof Trudy Turner from the University of Wisconsin-Milwaukee (UWM), a global expert on vervet monkeys. She has been working with the Department of Genetics at the UFS for the past fifteen years, and has also been appointed as an Affiliated Professor in the department.

“The Summer School programme is an opportunity for the American Primatology students to gain practical experience in Africa,” says Prof Grobler.

International interest in Summer School

This year’s Summer School programme involves four lecturers and nine students. The lecturers are from the University of Wisconsin-Milwaukee (UWM), the University of California, Los Angeles (UCLA), Boston University, and Central Washington University.

“We use the genetic information to determine
how monkeys historically infiltrated the
different areas in South Africa.”

This year’s focus is on the genetic structure of the monkeys in South Africa, and research that is being done on the differences and similarities in monkeys from different areas. “We use the genetic information to determine how monkeys historically infiltrated the different areas in South Africa,” says Prof Grobler.

Local nature reserve acting as host

The group will perform field work, including observing monkeys in the Soetdoring Nature Reserve, as well as laboratory work in the department, where they will be assisted by two laboratory technicians.

Two years ago, Prof Grobler and his department tested this idea on a smaller scale, and now they hope to make this a regular event. 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept