Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Cornel Bender
Dr Cornel Bender received her PhD qualification at the virtual graduation ceremonies in October. The title of her thesis is: Stem rust resistance in South African wheat and triticale.

The rapid distribution of disease-causing organisms such as Ug99, a wheat stem-rust pathotype, pointed out just how vulnerable global cereal production is to disease outbreaks.

These cereals include wheat, barley, rye, oats, triticale, rice, maize, and millet and are one of the most important food sources for human consumption.

According to Dr Cornel Bender, the projected world population of 10 billion in 2057 requires a growth of more than 40% in cereal production. Wheat is grown on more hectares than any other cereal and is one of the most important sources of calories for humans. However, the growth rate of wheat yields has declined from the 1960s to the 1990s. Therefore, it is essential to increase global wheat production.

“With the regular appearance of more aggressive stem rust pathotypes in South Africa, there is a constant need to discover new sources of resistance, understand the genetic base of presently deployed sources in wheat, triticale and barley cultivars, and to manipulate the deployment of resistant sources through a more sustainable approach,” says Dr Bender.

Her PhD thesis, titled: Stem rust resistance in South African wheat and triticale, includes various fundamental aspects for the effective management of stem rust in South Africa.

Dr Bender is a Professional Officer in the Division of Plant Pathology in the Department of Plant Sciences, who received her PhD at the virtual graduation ceremonies in October.

Innovative and cost effective

Her promotors, Prof Zakkie Pretorius, Research Fellow, and Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences, believe that she used an innovative approach to develop a cost-effective phenotyping method to select for more durable resistance types in a controlled greenhouse environment.

“In the past, results obtained from field trials used to assess adult plants for stem-rust resistance, were often influenced by abiotic factors, were seasonable in nature, expensive, and time consuming; therefore, the development of a dependable greenhouse screening system provides an important additional instrument for rust research,” says Dr Bender.

She adds that the greenhouse technique is used worldwide to screen for adult plant resistance and contribute to save time and money.

Broadening our knowledge

“Inheritance studies were undertaken to determine the genetic base of stem-rust resistance in selected South African wheat and triticale cultivars (developed from wheat/rye crosses) through seedling analysis as well as greenhouse and fieldwork,” she says.

Dr Bender believes the use and development of different resistance screening methods, the elucidation of host genetics, as well as the use of histological and microscopic methods to study early resistance responses, broaden our knowledge and understanding of stem-rust resistance in South African wheat and triticale cultivars.

Ultimately, rust researchers, grain producers, and also the general public – through access to their daily bread – will benefit from her study.

News Archive

Pianoboost a hit on Google Play Store
2017-03-01

Description: Pianoboost Tags: Pianoboost

Pianoboost is an interactive app developed by
Dr Frelet de Villiers, lecturer in the Odeion School of Music
at the University of the Free State.
Photo: Supplied

“I got the idea after watching my children play Sing Star on PlayStation, where the game can detect how accurately you sing. I realised this could turn my dream into a reality if I looking into the possibility of an app that can do note recognising,” says Dr Frelet de Villiers, developer of the Pianoboost app, about her brainchild.

Dr De Villiers, lecturer in the Odeion School of Music (OSM) at the University of the Free State (UFS), developed this interactive app for piano learners to learn music. She started the developing process three years ago, but the project only got momentum when she  approached LivX, a digital developing company in Pretoria, six months ago.

Useful for other instruments
Pianoboost has been live since 9 February 2017 and already received positive reviews, with a five-star rating on the Google Play Store. “In my experience as piano teacher, I know that learners struggle to learn their notes. They can’t recognise the note on the music sheet and therefore cannot play it on the piano,” says Dr De Villiers. Although this app is developed for piano, it is also successfully used for other instruments like the marimba, violin, and guitar, because it can pick up sounds from almost any instrument.

Ideal for use in academic programme
There are students in the certificate and diploma modules at the OSM who haven’t received any formal music training. Therefore, the app is ideal for them to use. “We have instrument-specific methodology in our degree courses. So, those students could also be exposed to the app for use in their own teaching of young learners,” says Dr De Villiers.

Different features sets app apart
The app, available on Android devices, has instant music recognition and impressive features that already sets it apart from existing learning apps. It is used on a real acoustical piano (you do not need to plug the tablet into a keyboard), has instant note recognition, shows the correct position of the note on the piano when you are wrong, and works like a flash card system, to name a few. “By using the app, you also learn the names of notes whether you played it right or wrong,” says Dr De Villiers.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept