Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 October 2020 | Story Ruan Bruwer | Photo BackpagePix
Khanyisa Chawane, a Protea player, should be one of the stars for the Free State Crinums in the Telkom Netball League. She was the Player of the League in 2018.

Having to play 11 matches in so many days before the knockout stage will be a daunting task, but their fitness levels are up to standard, says the coach of the Free State netball team. Burta de Kock of KovsieSport will again guide the Free State Crinums in the Telkom Netball League, which will be taking place between 14 and 27 October in Bloemfontein.

All but one of the 12 members of the team are studying at the University of the Free State (UFS).

“Planning will be of the utmost importance to manage the load on the players. We also have four players (Rolene Streutker, Chanel Vrey, Boitumelo Mahloko, and Refiloe Nketsa) who will participate in the South African U21 team that will play five invitational matches during the competition,” said De Kock.

In previous years, the competition took place over four to six weeks, but now it had to be fitted into two weeks due to COVID-19.

“So, it will be a tall order to play so many matches, but an exciting challenge. I believe the hard work the players had put in during the lockdown period will bear fruit. They were exceptional and very determined to stay in shape.”

The Crinums won the first three years of the competition, but couldn’t reach the final in the following three years. Apart from the 11 Kovsies in the Crinums team, there are 9 current or former UFS students in other teams participating in the league. 

They are Zandré Smit, Bianca Pienaar, Dané Klopper, Arné Fourie, Bethenie du Raan (all Northern Cape Diamonds), Maryke Coetzee, Danelle van der Heever (both Mpumalanga Sunbirds), Rieze Straeuli (Western Cape Tornados), and Alicia Puren (KZN Kingdom Stars).

The Crinums team: Boitumelo Mahloko, Ané Retief, Jana Scholtz, Khanyisa Chawane, Lefébre Rademan (captain), Sikholiwe Mdletshe, Claudia van den Berg, Bianca de Wee, Rolene Streutker, Chanel Vrey, Lerato Chabwe, and Refiloe Nketsa.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept