Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 October 2020 | Story Ruan Bruwer | Photo BackpagePix
Khanyisa Chawane, a Protea player, should be one of the stars for the Free State Crinums in the Telkom Netball League. She was the Player of the League in 2018.

Having to play 11 matches in so many days before the knockout stage will be a daunting task, but their fitness levels are up to standard, says the coach of the Free State netball team. Burta de Kock of KovsieSport will again guide the Free State Crinums in the Telkom Netball League, which will be taking place between 14 and 27 October in Bloemfontein.

All but one of the 12 members of the team are studying at the University of the Free State (UFS).

“Planning will be of the utmost importance to manage the load on the players. We also have four players (Rolene Streutker, Chanel Vrey, Boitumelo Mahloko, and Refiloe Nketsa) who will participate in the South African U21 team that will play five invitational matches during the competition,” said De Kock.

In previous years, the competition took place over four to six weeks, but now it had to be fitted into two weeks due to COVID-19.

“So, it will be a tall order to play so many matches, but an exciting challenge. I believe the hard work the players had put in during the lockdown period will bear fruit. They were exceptional and very determined to stay in shape.”

The Crinums won the first three years of the competition, but couldn’t reach the final in the following three years. Apart from the 11 Kovsies in the Crinums team, there are 9 current or former UFS students in other teams participating in the league. 

They are Zandré Smit, Bianca Pienaar, Dané Klopper, Arné Fourie, Bethenie du Raan (all Northern Cape Diamonds), Maryke Coetzee, Danelle van der Heever (both Mpumalanga Sunbirds), Rieze Straeuli (Western Cape Tornados), and Alicia Puren (KZN Kingdom Stars).

The Crinums team: Boitumelo Mahloko, Ané Retief, Jana Scholtz, Khanyisa Chawane, Lefébre Rademan (captain), Sikholiwe Mdletshe, Claudia van den Berg, Bianca de Wee, Rolene Streutker, Chanel Vrey, Lerato Chabwe, and Refiloe Nketsa.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept