Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 October 2020 | Story Ruan Bruwer | Photo BackpagePix
Khanyisa Chawane, a Protea player, should be one of the stars for the Free State Crinums in the Telkom Netball League. She was the Player of the League in 2018.

Having to play 11 matches in so many days before the knockout stage will be a daunting task, but their fitness levels are up to standard, says the coach of the Free State netball team. Burta de Kock of KovsieSport will again guide the Free State Crinums in the Telkom Netball League, which will be taking place between 14 and 27 October in Bloemfontein.

All but one of the 12 members of the team are studying at the University of the Free State (UFS).

“Planning will be of the utmost importance to manage the load on the players. We also have four players (Rolene Streutker, Chanel Vrey, Boitumelo Mahloko, and Refiloe Nketsa) who will participate in the South African U21 team that will play five invitational matches during the competition,” said De Kock.

In previous years, the competition took place over four to six weeks, but now it had to be fitted into two weeks due to COVID-19.

“So, it will be a tall order to play so many matches, but an exciting challenge. I believe the hard work the players had put in during the lockdown period will bear fruit. They were exceptional and very determined to stay in shape.”

The Crinums won the first three years of the competition, but couldn’t reach the final in the following three years. Apart from the 11 Kovsies in the Crinums team, there are 9 current or former UFS students in other teams participating in the league. 

They are Zandré Smit, Bianca Pienaar, Dané Klopper, Arné Fourie, Bethenie du Raan (all Northern Cape Diamonds), Maryke Coetzee, Danelle van der Heever (both Mpumalanga Sunbirds), Rieze Straeuli (Western Cape Tornados), and Alicia Puren (KZN Kingdom Stars).

The Crinums team: Boitumelo Mahloko, Ané Retief, Jana Scholtz, Khanyisa Chawane, Lefébre Rademan (captain), Sikholiwe Mdletshe, Claudia van den Berg, Bianca de Wee, Rolene Streutker, Chanel Vrey, Lerato Chabwe, and Refiloe Nketsa.

News Archive

Oxford professor unlocks secrets of DNA
2017-03-31

Description: Oxford professor unlocks secrets of DNA Tags: Oxford professor unlocks secrets of DNA

From left are: Dr Cristian Capelli, Associate Professor
of Human Evolution at Oxford University;
Dr Karen Ehlers, Senior Lecturer and Prof Paul Grobler,
both from the Department of Genetics at the UFS.
Photo: Siobhan Canavan

Many people are interested to know more about their history and origins, and with the help of genetics, it is possible to provide more information about one’s roots.

During a lecture at the Department of Genetics at the University of the Free State (UFS), Dr Cristian Capelli, Associate Professor of Human Evolution at Oxford University in the UK, addressed staff members and students on the history of our species.

Reconstructing the history of human population
With his research, titled: People on the move: population structure and gene-flow in Southern Africa, Dr Capelli looks at reconstructing the history of human populations, focusing mainly on how the different human populations are related, as well as how they exchange genes.

He said this research could be of great significance to the medical field too. “Knowing what the genetic make-up of individuals is, can give us some information about their susceptibility to diseases, or how they would react to a given medicine. Therefore, this knowledge can be used to inform health-related policies.”

Combining individual histories of multiple people
To understand this research more clearly, Dr Capelli explained it in terms of DNA and how every individual receives half of their DNA from their mother and half from their father just as their parents had received theirs from their parents. And so it goes from generation after generation. Each individual stores a part of their ancestors’ DNA which makes up the individual genetic history of each person.

“If we combine these individual histories by looking at the DNA of multiple people, we can identify the occurrences that are shared across individuals and therefore reconstruct the history of a population, and in the same way on a larger scale, the history of our own species, homo sapiens.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept