Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 October 2020 | Story Tom Ferreira and Jóhann Thormählen | Photo Blue Bulls Company
Pote Human.

The former Free State forward and coach, Pote Human, is coming back ‘home’. He has been appointed as the new FNB Shimlas head coach for the 2021 Varsity Cup competition and will be in charge of the rugby team for the second time.
According to Human, he has always had a ‘soft spot’ for the Free State, where he coached at club, university, and provincial level.

The experienced coach, who coached the Bulls Super Rugby team in 2019 and 2020, will already be at the University of the Free State (UFS) on 2 November 2020 to start preparing the FNB Shimlas for the Varsity Cup. He takes over from the former Springbok flank, Hendro Scholtz, who is no longer available as head coach due to work pressure. Scholtz will continue to be a FNB Shimlas assistant coach.

Free State ties 

Human, who has a long association with Free State rugby, has been involved as a coach with teams such as the Bulls, Griquas, Tuks, and the Ricoh Black Rams in Japan.

He says he is very excited about the new challenge. “Bloemfontein has wonderful people and the FNB Shimlas have a great management team. I have known Jaco (Swanepoel), who coached my son Gerhard at Grey College, since my years as Shimla coach.”

The former loose forward coached the Shimlas from 2000 to 2004. “I am particularly proud that the Shimlas won the FNB Super Bowl tournament (similar to the Varsity Cup), the Bloemfontein club championship trophy (Stadsbeker), and the National Club Championships in 2004.

“Several of the young men who played for Shimlas at the time, including Jannie du Plessis, Bismarck du Plessis, Gurthrö Steenkamp, CJ van der Linde, Ruan Pienaar, and Wian du Preez, later became Springboks.”

Human was replaced by the former Bok coach Jake White as the Bulls head coach in May. The Bulls, under Human’s leadership, finished as the leading South African team on the log in Super Rugby in 2019, and advanced to the quarterfinals.

A seasoned coach

He will now give back where it all started. Human played two matches for the Free State senior team in 1979 as an U19 player, and again played for the province from 1989 to 1993 – a total of 82 matches, 64 of them as captain. He also played 116 games for Eastern Province.

His coaching career began in 1994 as forwards coach for the Free State under the late Nelie Smith.
The Free Staters reached the Currie Cup final that year, where they lost to the then Transvaal in Bloemfontein. Human then coached the Police Rugby Club in Bloemfontein before joining the Shimlas in 2000.

“Pote is a seasoned coach who will bring something new to the team,” says Swanepoel, Head of Rugby Coaching and High-Performance Sports at the UFS. “As a former Shimla coach, he also knows the culture of the team. The UFS FNB Young Guns was the leading team in the Varsity Cup for U20 teams this year, so there is ample talent for him to work with.”

An investment in the future 

Jerry Segwaba, President of the Free State Rugby Union, says Human’s appointment is an investment in the future. “The FNB Shimlas have always been an important link in the Free State rugby chain, which starts at schools and extends to university and club rugby to professional rugby.”

“Pote and his coaching team will play an important role in developing quality players for the Cheetahs’ senior teams. We welcome him back home and wish him all the best.”

Ryno Opperman, chairman of the board of the Free State Cheetahs, also has a high regard for him. Opperman played under Human as Free State captain.

“He is the right man at the right time for the job,” he says. “His appointment is a vote of confidence in the future of Free State rugby. The Free State Cheetahs are the Currie Cup champions and must keep on developing talent for the future.”
“It is encouraging to see players and coaches such as Pote, Ruan Pienaar, and Frans Steyn returning to their roots in the Free State.”

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept