Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 October 2020 | Story Tom Ferreira and Jóhann Thormählen | Photo Blue Bulls Company
Pote Human.

The former Free State forward and coach, Pote Human, is coming back ‘home’. He has been appointed as the new FNB Shimlas head coach for the 2021 Varsity Cup competition and will be in charge of the rugby team for the second time.
According to Human, he has always had a ‘soft spot’ for the Free State, where he coached at club, university, and provincial level.

The experienced coach, who coached the Bulls Super Rugby team in 2019 and 2020, will already be at the University of the Free State (UFS) on 2 November 2020 to start preparing the FNB Shimlas for the Varsity Cup. He takes over from the former Springbok flank, Hendro Scholtz, who is no longer available as head coach due to work pressure. Scholtz will continue to be a FNB Shimlas assistant coach.

Free State ties 

Human, who has a long association with Free State rugby, has been involved as a coach with teams such as the Bulls, Griquas, Tuks, and the Ricoh Black Rams in Japan.

He says he is very excited about the new challenge. “Bloemfontein has wonderful people and the FNB Shimlas have a great management team. I have known Jaco (Swanepoel), who coached my son Gerhard at Grey College, since my years as Shimla coach.”

The former loose forward coached the Shimlas from 2000 to 2004. “I am particularly proud that the Shimlas won the FNB Super Bowl tournament (similar to the Varsity Cup), the Bloemfontein club championship trophy (Stadsbeker), and the National Club Championships in 2004.

“Several of the young men who played for Shimlas at the time, including Jannie du Plessis, Bismarck du Plessis, Gurthrö Steenkamp, CJ van der Linde, Ruan Pienaar, and Wian du Preez, later became Springboks.”

Human was replaced by the former Bok coach Jake White as the Bulls head coach in May. The Bulls, under Human’s leadership, finished as the leading South African team on the log in Super Rugby in 2019, and advanced to the quarterfinals.

A seasoned coach

He will now give back where it all started. Human played two matches for the Free State senior team in 1979 as an U19 player, and again played for the province from 1989 to 1993 – a total of 82 matches, 64 of them as captain. He also played 116 games for Eastern Province.

His coaching career began in 1994 as forwards coach for the Free State under the late Nelie Smith.
The Free Staters reached the Currie Cup final that year, where they lost to the then Transvaal in Bloemfontein. Human then coached the Police Rugby Club in Bloemfontein before joining the Shimlas in 2000.

“Pote is a seasoned coach who will bring something new to the team,” says Swanepoel, Head of Rugby Coaching and High-Performance Sports at the UFS. “As a former Shimla coach, he also knows the culture of the team. The UFS FNB Young Guns was the leading team in the Varsity Cup for U20 teams this year, so there is ample talent for him to work with.”

An investment in the future 

Jerry Segwaba, President of the Free State Rugby Union, says Human’s appointment is an investment in the future. “The FNB Shimlas have always been an important link in the Free State rugby chain, which starts at schools and extends to university and club rugby to professional rugby.”

“Pote and his coaching team will play an important role in developing quality players for the Cheetahs’ senior teams. We welcome him back home and wish him all the best.”

Ryno Opperman, chairman of the board of the Free State Cheetahs, also has a high regard for him. Opperman played under Human as Free State captain.

“He is the right man at the right time for the job,” he says. “His appointment is a vote of confidence in the future of Free State rugby. The Free State Cheetahs are the Currie Cup champions and must keep on developing talent for the future.”
“It is encouraging to see players and coaches such as Pote, Ruan Pienaar, and Frans Steyn returning to their roots in the Free State.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept