Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 October 2020 | Story Leonie Bolleurs | Photo Supplied
ARU Researchers on mountain slope
A team of international researchers discovered in March 2020 a new grass species, Festuca drakensbergensis, during extensive fieldwork in the 40 000 km2 Maloti-Drakensberg area.

In their search to learn more about the impact of humans and climate change on grasses in the Drakensberg Mountain Centre (DMC), one of the most studied mountain systems in the region, a group of scientists found a new grass species, which they named Festuca drakensbergensis (common name unknown; herein could be designated the ‘Drakensberg Alpine Fescue’).

The team who is working on the project includes Dr Vincent R. Clark, Head of the Afromontane Research Unit at the University of the Free State (UFS), Prof Steven P. Sylvester from the Nanjing Forestry University in Nanjing, Jiangsu, China, and Dr Robert J. Soreng, working in the Department of Botany at the Smithsonian Institution in Washington DC.

 

The discovery

The species, that was discovered in March 2020, was found during extensive fieldwork and herbarium research across the 40 000 km2 Maloti-Drakensberg area. The DMC has a very high endemic plant diversity, says Dr Clark.

He goes on to say that the DMC has a Montane Sub-Centre (below 2800 m) and an alpine sub-centre (above 2800 m). “It is the only mountain system in Africa south of Mt Kilimanjaro with an alpine component,” he adds.

ProfSylvester says the species was easily recognisable during their fieldwork, being found fairly common throughout the Afro-alpine landscape. Although at that point they only knew it to be a distinct taxon, they realised that the species was new to science when they tried to identify it and compared it with other closely related Festuca taxa.

Besides this discovery, the team also reinstated two varieties of Festuca caprina and rediscovered the overlooked F. exaristata, all of them endemic to the DMC. Prof Sylvester believes that this discovery highlights the importance of these high-elevation ecosystems as harbours of unique biodiversity that require focused conservation efforts.

Although grasses are a dominant species that control the ecosystem function in the Afro-alpine grasslands, they are the least known of all plant species found in these ecosystems. Up until now there has been a lack of focused research on Afro-alpine grasses.

 “We provide a taxonomic reappraisal of the Festuca caprina complex that will aid future ecological and biogeographical research in the DMC and allow us to better understand the complexities of these ecosystems and how to conserve and manage them,” says Prof Sylvester.

 

This discovery highlights the importance of these high-elevation ecosystems as harbours of unique biodiversity that require focused conservation efforts. - Prof Steven Sylvester

 

 

Adding value

According to Dr Clark, the species contributes to the grazing and rangeland value of the Maloti-Drakensberg. “It also has functional value in terms of maintaining ecosystem integrity and associated water production landscape value in the area,” he says.

“The species seems fairly robust to pressures from grazing and burning, being found in both heavily grazed areas and semi-pristine areas, and may prove a useful species as part of a seed mix of native grasses for reseeding degraded Afro-alpine slopes and ski slopes,” mentions Prof Sylvester regarding the benefits of this indigenous species to the region.

The species is very common in Lesotho in Bokong Nature Reserve, Sehlabathebe National Park, and Sani Pass, and at Tiffendell and AfriSki ski resorts. Dr Soreng believes the species is likely to have a wider distribution range across the Maloti-Drakensberg, than what was documented before research was cut short due to the COVID-19 pandemic.

 

Next steps

According to Prof Sylvester, this taxonomic research feeds into a large-scale ecological study looking at the response of Afro-alpine ecosystems to different grazing and burning regimes that is being run in collaboration with Dr Clark at the ARU and Dr Soreng of the Smithsonian Institute, Washington DC.

“While our research has uncovered interesting novelties and provided a greater understanding of the taxonomy of grasses from high elevation Maloti-Drakensberg, there is still much to be done with regards taxonomic research of cool-season grasses in southern Africa,” says Prof Sylvester.

Dr Clark supports this notion and states that there is a major need for a better holistic understanding of the alpine zone in the Maloti-Drakensberg, given immediate pressures from over-grazing, land-use transformation, invasive species, and climate change.

“This is because the Maloti-Drakensberg is the most important water tower in southern Africa, providing water for some 30 million people in three countries. As the Maloti-Drakensberg is dominated by natural grasslands, understanding grass diversity and ecological behaviour is a primary need in the face of immediate human impacts and global change,” he says.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept