Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 October 2020 | Story Leonie Bolleurs | Photo Supplied
ARU Researchers on mountain slope
A team of international researchers discovered in March 2020 a new grass species, Festuca drakensbergensis, during extensive fieldwork in the 40 000 km2 Maloti-Drakensberg area.

In their search to learn more about the impact of humans and climate change on grasses in the Drakensberg Mountain Centre (DMC), one of the most studied mountain systems in the region, a group of scientists found a new grass species, which they named Festuca drakensbergensis (common name unknown; herein could be designated the ‘Drakensberg Alpine Fescue’).

The team who is working on the project includes Dr Vincent R. Clark, Head of the Afromontane Research Unit at the University of the Free State (UFS), Prof Steven P. Sylvester from the Nanjing Forestry University in Nanjing, Jiangsu, China, and Dr Robert J. Soreng, working in the Department of Botany at the Smithsonian Institution in Washington DC.

 

The discovery

The species, that was discovered in March 2020, was found during extensive fieldwork and herbarium research across the 40 000 km2 Maloti-Drakensberg area. The DMC has a very high endemic plant diversity, says Dr Clark.

He goes on to say that the DMC has a Montane Sub-Centre (below 2800 m) and an alpine sub-centre (above 2800 m). “It is the only mountain system in Africa south of Mt Kilimanjaro with an alpine component,” he adds.

ProfSylvester says the species was easily recognisable during their fieldwork, being found fairly common throughout the Afro-alpine landscape. Although at that point they only knew it to be a distinct taxon, they realised that the species was new to science when they tried to identify it and compared it with other closely related Festuca taxa.

Besides this discovery, the team also reinstated two varieties of Festuca caprina and rediscovered the overlooked F. exaristata, all of them endemic to the DMC. Prof Sylvester believes that this discovery highlights the importance of these high-elevation ecosystems as harbours of unique biodiversity that require focused conservation efforts.

Although grasses are a dominant species that control the ecosystem function in the Afro-alpine grasslands, they are the least known of all plant species found in these ecosystems. Up until now there has been a lack of focused research on Afro-alpine grasses.

 “We provide a taxonomic reappraisal of the Festuca caprina complex that will aid future ecological and biogeographical research in the DMC and allow us to better understand the complexities of these ecosystems and how to conserve and manage them,” says Prof Sylvester.

 

This discovery highlights the importance of these high-elevation ecosystems as harbours of unique biodiversity that require focused conservation efforts. - Prof Steven Sylvester

 

 

Adding value

According to Dr Clark, the species contributes to the grazing and rangeland value of the Maloti-Drakensberg. “It also has functional value in terms of maintaining ecosystem integrity and associated water production landscape value in the area,” he says.

“The species seems fairly robust to pressures from grazing and burning, being found in both heavily grazed areas and semi-pristine areas, and may prove a useful species as part of a seed mix of native grasses for reseeding degraded Afro-alpine slopes and ski slopes,” mentions Prof Sylvester regarding the benefits of this indigenous species to the region.

The species is very common in Lesotho in Bokong Nature Reserve, Sehlabathebe National Park, and Sani Pass, and at Tiffendell and AfriSki ski resorts. Dr Soreng believes the species is likely to have a wider distribution range across the Maloti-Drakensberg, than what was documented before research was cut short due to the COVID-19 pandemic.

 

Next steps

According to Prof Sylvester, this taxonomic research feeds into a large-scale ecological study looking at the response of Afro-alpine ecosystems to different grazing and burning regimes that is being run in collaboration with Dr Clark at the ARU and Dr Soreng of the Smithsonian Institute, Washington DC.

“While our research has uncovered interesting novelties and provided a greater understanding of the taxonomy of grasses from high elevation Maloti-Drakensberg, there is still much to be done with regards taxonomic research of cool-season grasses in southern Africa,” says Prof Sylvester.

Dr Clark supports this notion and states that there is a major need for a better holistic understanding of the alpine zone in the Maloti-Drakensberg, given immediate pressures from over-grazing, land-use transformation, invasive species, and climate change.

“This is because the Maloti-Drakensberg is the most important water tower in southern Africa, providing water for some 30 million people in three countries. As the Maloti-Drakensberg is dominated by natural grasslands, understanding grass diversity and ecological behaviour is a primary need in the face of immediate human impacts and global change,” he says.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept