Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 October 2020 | Story Leonie Bolleurs | Photo Supplied
ARU Researchers on mountain slope
A team of international researchers discovered in March 2020 a new grass species, Festuca drakensbergensis, during extensive fieldwork in the 40 000 km2 Maloti-Drakensberg area.

In their search to learn more about the impact of humans and climate change on grasses in the Drakensberg Mountain Centre (DMC), one of the most studied mountain systems in the region, a group of scientists found a new grass species, which they named Festuca drakensbergensis (common name unknown; herein could be designated the ‘Drakensberg Alpine Fescue’).

The team who is working on the project includes Dr Vincent R. Clark, Head of the Afromontane Research Unit at the University of the Free State (UFS), Prof Steven P. Sylvester from the Nanjing Forestry University in Nanjing, Jiangsu, China, and Dr Robert J. Soreng, working in the Department of Botany at the Smithsonian Institution in Washington DC.

 

The discovery

The species, that was discovered in March 2020, was found during extensive fieldwork and herbarium research across the 40 000 km2 Maloti-Drakensberg area. The DMC has a very high endemic plant diversity, says Dr Clark.

He goes on to say that the DMC has a Montane Sub-Centre (below 2800 m) and an alpine sub-centre (above 2800 m). “It is the only mountain system in Africa south of Mt Kilimanjaro with an alpine component,” he adds.

ProfSylvester says the species was easily recognisable during their fieldwork, being found fairly common throughout the Afro-alpine landscape. Although at that point they only knew it to be a distinct taxon, they realised that the species was new to science when they tried to identify it and compared it with other closely related Festuca taxa.

Besides this discovery, the team also reinstated two varieties of Festuca caprina and rediscovered the overlooked F. exaristata, all of them endemic to the DMC. Prof Sylvester believes that this discovery highlights the importance of these high-elevation ecosystems as harbours of unique biodiversity that require focused conservation efforts.

Although grasses are a dominant species that control the ecosystem function in the Afro-alpine grasslands, they are the least known of all plant species found in these ecosystems. Up until now there has been a lack of focused research on Afro-alpine grasses.

 “We provide a taxonomic reappraisal of the Festuca caprina complex that will aid future ecological and biogeographical research in the DMC and allow us to better understand the complexities of these ecosystems and how to conserve and manage them,” says Prof Sylvester.

 

This discovery highlights the importance of these high-elevation ecosystems as harbours of unique biodiversity that require focused conservation efforts. - Prof Steven Sylvester

 

 

Adding value

According to Dr Clark, the species contributes to the grazing and rangeland value of the Maloti-Drakensberg. “It also has functional value in terms of maintaining ecosystem integrity and associated water production landscape value in the area,” he says.

“The species seems fairly robust to pressures from grazing and burning, being found in both heavily grazed areas and semi-pristine areas, and may prove a useful species as part of a seed mix of native grasses for reseeding degraded Afro-alpine slopes and ski slopes,” mentions Prof Sylvester regarding the benefits of this indigenous species to the region.

The species is very common in Lesotho in Bokong Nature Reserve, Sehlabathebe National Park, and Sani Pass, and at Tiffendell and AfriSki ski resorts. Dr Soreng believes the species is likely to have a wider distribution range across the Maloti-Drakensberg, than what was documented before research was cut short due to the COVID-19 pandemic.

 

Next steps

According to Prof Sylvester, this taxonomic research feeds into a large-scale ecological study looking at the response of Afro-alpine ecosystems to different grazing and burning regimes that is being run in collaboration with Dr Clark at the ARU and Dr Soreng of the Smithsonian Institute, Washington DC.

“While our research has uncovered interesting novelties and provided a greater understanding of the taxonomy of grasses from high elevation Maloti-Drakensberg, there is still much to be done with regards taxonomic research of cool-season grasses in southern Africa,” says Prof Sylvester.

Dr Clark supports this notion and states that there is a major need for a better holistic understanding of the alpine zone in the Maloti-Drakensberg, given immediate pressures from over-grazing, land-use transformation, invasive species, and climate change.

“This is because the Maloti-Drakensberg is the most important water tower in southern Africa, providing water for some 30 million people in three countries. As the Maloti-Drakensberg is dominated by natural grasslands, understanding grass diversity and ecological behaviour is a primary need in the face of immediate human impacts and global change,” he says.

News Archive

Researchers international leaders in satellite tracking in the wildlife environment
2015-05-29

 

Ground-breaking research has attracted international media attention to Francois Deacon, lecturer and researcher in the Department Animal, Wildlife and Grassland Sciences at the UFS, and Prof Nico Smit, from the same department. They are the first researchers in the world to equip giraffes with GPS collars, and to conduct research on this initiative. Recently, they have been joined by Hennie Butler from the Department of Zoology as well as Free State Nature Conservation to further this research.

“Satellite tracking is proving to be extremely valuable in the wildlife environment. The unit is based on a mobile global two-way communication platform, utilising two-way data satellite communication, complete with GPS systems.

“It allows us to track animals day and night, while we monitor their movements remotely from the computer. These systems make possible the efficient control and monitoring of wildlife in all weather conditions and in near-to-real time. We can even communicate with the animals, calling up their positions or changing the tracking schedules.

“The satellite collar allows us to use the extremely accurate data to conduct research with the best technology available. The volume of data received allows us to publish the data in scientific journals and research-related articles.  

“Scientific institutions and the public sector have both shown great interest in satellite tracking, which opens up new ground for scientific research for this university. Data management can be done, using Africa Wildlife Tracking (AWT) equipment where we can access our data personally, store it, and make visual presentations. The AWT system and software architecture provide the researcher with asset tracking, GPS location reports, geo-fencing, highly-detailed custom mapping, history reports and playback, polling on demand, history plotting on maps, and a range of reporting types and functions,” Francois said.

Data can be analysed to determine home range, dispersal, or habitat preference for any specific species.

Francois has been involved in multiple research projects over the last 12 years on wildlife species and domesticated animals, including the collaring of species such as Black-backed Jackal, Caracal, African Wild Dog, Hyena, Lion, Cheetah, Cattle, Kudu, Giraffe, and Black Rhino: “Giraffe definitely being the most challenging of all,” he said.

In 2010, he started working on his PhD, entitled The spatial ecology, habitat preferences and diet selection of giraffe (Giraffa camelopardalis giraffa) in the Kalahari region of South Africa.

 

Since then, his work has resulted not only in more research work (supervising four Masters students) but also in a number of national and international projects. These include work in the:

  • Kalahari region (e.g. Khamab Nature Reserve and Kgalagadi Transfrontier Park)
  • Kuruman region (Collared 18 cattle to identify spatial patterns in relation to the qualities of vegetation and soil-types available. This project took place in collaboration with Born University in Germany)
  • Woodland Hills Wildlife Estate and Kolomella Iron Ore – ecological monitoring
  • A number of Free State nature reserves (e.g. Distribution of herbivores (kudu and giraffe) and predators (camera traps)

Francois is also involved with species breeding programmes and management (giraffe, buffalo, sable, roan, and rhino) in Korrannaberg, Rustenburg, Hertzogville, Douglas, and Bethlehem as well as animal and ecological monitoring in Kolomella and Beesthoek iron ore.

Besides the collaring of giraffes, Francois and his colleagues are involved in national projects, where they collect milk from lactating giraffes and DNA material, blood samples, and ecto/endo parasites from giraffes in Southern Africa.

With international projects, Francois is working to collect DNA material for the classification of the nine sub-species of giraffe in Africa. He is also involved in projects focusing on the spatial ecology and adaptation of giraffe in Uganda (Murchison Falls), and to save the last 30 giraffe in the DRC- Garamba National Park.

This project has attracted a good deal of international interest. In June 2014, a US film crew (freelancing for Discovery Channel) filmed a documentary on Francois’ research (trailer of documentary). Early in 2015, a second crew, filming for National Geographic, also visited Francois to document his work.

 

More information about Francois’ work is available at the GCF website

Read Francois Deacon's PhD abstract

Direct enquiries to news@ufs.ac.za.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept