Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 October 2020 | Story Leonie Bolleurs | Photo Supplied
ARU Researchers on mountain slope
A team of international researchers discovered in March 2020 a new grass species, Festuca drakensbergensis, during extensive fieldwork in the 40 000 km2 Maloti-Drakensberg area.

In their search to learn more about the impact of humans and climate change on grasses in the Drakensberg Mountain Centre (DMC), one of the most studied mountain systems in the region, a group of scientists found a new grass species, which they named Festuca drakensbergensis (common name unknown; herein could be designated the ‘Drakensberg Alpine Fescue’).

The team who is working on the project includes Dr Vincent R. Clark, Head of the Afromontane Research Unit at the University of the Free State (UFS), Prof Steven P. Sylvester from the Nanjing Forestry University in Nanjing, Jiangsu, China, and Dr Robert J. Soreng, working in the Department of Botany at the Smithsonian Institution in Washington DC.

 

The discovery

The species, that was discovered in March 2020, was found during extensive fieldwork and herbarium research across the 40 000 km2 Maloti-Drakensberg area. The DMC has a very high endemic plant diversity, says Dr Clark.

He goes on to say that the DMC has a Montane Sub-Centre (below 2800 m) and an alpine sub-centre (above 2800 m). “It is the only mountain system in Africa south of Mt Kilimanjaro with an alpine component,” he adds.

ProfSylvester says the species was easily recognisable during their fieldwork, being found fairly common throughout the Afro-alpine landscape. Although at that point they only knew it to be a distinct taxon, they realised that the species was new to science when they tried to identify it and compared it with other closely related Festuca taxa.

Besides this discovery, the team also reinstated two varieties of Festuca caprina and rediscovered the overlooked F. exaristata, all of them endemic to the DMC. Prof Sylvester believes that this discovery highlights the importance of these high-elevation ecosystems as harbours of unique biodiversity that require focused conservation efforts.

Although grasses are a dominant species that control the ecosystem function in the Afro-alpine grasslands, they are the least known of all plant species found in these ecosystems. Up until now there has been a lack of focused research on Afro-alpine grasses.

 “We provide a taxonomic reappraisal of the Festuca caprina complex that will aid future ecological and biogeographical research in the DMC and allow us to better understand the complexities of these ecosystems and how to conserve and manage them,” says Prof Sylvester.

 

This discovery highlights the importance of these high-elevation ecosystems as harbours of unique biodiversity that require focused conservation efforts. - Prof Steven Sylvester

 

 

Adding value

According to Dr Clark, the species contributes to the grazing and rangeland value of the Maloti-Drakensberg. “It also has functional value in terms of maintaining ecosystem integrity and associated water production landscape value in the area,” he says.

“The species seems fairly robust to pressures from grazing and burning, being found in both heavily grazed areas and semi-pristine areas, and may prove a useful species as part of a seed mix of native grasses for reseeding degraded Afro-alpine slopes and ski slopes,” mentions Prof Sylvester regarding the benefits of this indigenous species to the region.

The species is very common in Lesotho in Bokong Nature Reserve, Sehlabathebe National Park, and Sani Pass, and at Tiffendell and AfriSki ski resorts. Dr Soreng believes the species is likely to have a wider distribution range across the Maloti-Drakensberg, than what was documented before research was cut short due to the COVID-19 pandemic.

 

Next steps

According to Prof Sylvester, this taxonomic research feeds into a large-scale ecological study looking at the response of Afro-alpine ecosystems to different grazing and burning regimes that is being run in collaboration with Dr Clark at the ARU and Dr Soreng of the Smithsonian Institute, Washington DC.

“While our research has uncovered interesting novelties and provided a greater understanding of the taxonomy of grasses from high elevation Maloti-Drakensberg, there is still much to be done with regards taxonomic research of cool-season grasses in southern Africa,” says Prof Sylvester.

Dr Clark supports this notion and states that there is a major need for a better holistic understanding of the alpine zone in the Maloti-Drakensberg, given immediate pressures from over-grazing, land-use transformation, invasive species, and climate change.

“This is because the Maloti-Drakensberg is the most important water tower in southern Africa, providing water for some 30 million people in three countries. As the Maloti-Drakensberg is dominated by natural grasslands, understanding grass diversity and ecological behaviour is a primary need in the face of immediate human impacts and global change,” he says.

News Archive

Oxford professor unlocks secrets of DNA
2017-03-31

Description: Oxford professor unlocks secrets of DNA Tags: Oxford professor unlocks secrets of DNA

From left are: Dr Cristian Capelli, Associate Professor
of Human Evolution at Oxford University;
Dr Karen Ehlers, Senior Lecturer and Prof Paul Grobler,
both from the Department of Genetics at the UFS.
Photo: Siobhan Canavan

Many people are interested to know more about their history and origins, and with the help of genetics, it is possible to provide more information about one’s roots.

During a lecture at the Department of Genetics at the University of the Free State (UFS), Dr Cristian Capelli, Associate Professor of Human Evolution at Oxford University in the UK, addressed staff members and students on the history of our species.

Reconstructing the history of human population
With his research, titled: People on the move: population structure and gene-flow in Southern Africa, Dr Capelli looks at reconstructing the history of human populations, focusing mainly on how the different human populations are related, as well as how they exchange genes.

He said this research could be of great significance to the medical field too. “Knowing what the genetic make-up of individuals is, can give us some information about their susceptibility to diseases, or how they would react to a given medicine. Therefore, this knowledge can be used to inform health-related policies.”

Combining individual histories of multiple people
To understand this research more clearly, Dr Capelli explained it in terms of DNA and how every individual receives half of their DNA from their mother and half from their father just as their parents had received theirs from their parents. And so it goes from generation after generation. Each individual stores a part of their ancestors’ DNA which makes up the individual genetic history of each person.

“If we combine these individual histories by looking at the DNA of multiple people, we can identify the occurrences that are shared across individuals and therefore reconstruct the history of a population, and in the same way on a larger scale, the history of our own species, homo sapiens.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept