Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Kgosi Mocwagae explored the Qwaqwa water crisis because at a young age, he could not understand why the community in which he grew up faced so many water challenges despite a high presence of water from rivers, consistent rainfall, and streams bursting from the ground.

Dr Kgosi Mocwagae, Programme Director and Lecturer: Department of Urban and Regional Planning, received his PhD qualification during the October virtual graduation ceremonies.

His study, titled Exploring the Qwaqwa water crisis for effective planning post-apartheid, focuses on the water crisis in the Qwaqwa area, which commenced on 1 January 2016 and saw people without access to clean drinking water from their taps. The community had to turn to alternative means, such as collecting water from government-contracted water tankers, rivers, emergency hydrants, and wells.

Understanding the water crisis

Dr Mocwagae says the reason why he took up this study was because at a young age, he could not understand why the community in which he grew up faced so many water challenges despite a high presence of water from rivers, consistent rainfall, and streams bursting from the ground.
 
In this study, he aimed to explore the history of water policy in South Africa, together with the water crisis in Qwaqwa. He also documented the lived experiences of the affected Qwaqwa communities to determine the effect of not having access to clean drinking water in terms of quality of water, time, money, and distance travelled, to name just a few. 

Dr Mocwagae furthermore assessed interventions by various actors during the Qwaqwa water crisis, which included accessing water from municipally contracted water tankers, streams and rivers, rainwater harvesting, donations, paying for delivery of water, boreholes, and emergency water hydrants intended for fire breakouts. He also investigated the implications of the Qwaqwa water crisis for effective planning in post-apartheid South Africa.

He states: “Despite reports from the government that the Qwaqwa water crisis was an issue from 2015 and a result of drought, the study proved differently.” 

Water crisis due to poor planning

“Firstly, the water crisis was a cumulative effect of poor water planning since the founding of Qwaqwa as a homeland in 1974. Further to this, Qwaqwa has not been able to sufficiently provide water to the community from 1974 to date.”

Dr Mocwagae continues: “A major contributing factor to the water crisis was that the three dams in the area were still performing their primary functions as established during apartheid. Planning would have to be done to reprioritise water to Qwaqwa.

He also found that the municipality had not planned and invested in the maintenance and development of water infrastructure to provide water. 

The study was also able to demonstrate that there is a form of socialisation in planning that does not prioritise the community of Qwaqwa. In this community, more than 50% of the people live in poverty. According to Dr Mocwagae’s findings, the idea exists that the community first needs to be viewed a worthy economic contributor in order for them to benefit from water that originates from Qwaqwa. 

“Alternative means of accessing water and water-use education are also needed as part of the process of resolving the Qwaqwa water crisis,” says Dr Mocwagae. 

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept