Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Kgosi Mocwagae explored the Qwaqwa water crisis because at a young age, he could not understand why the community in which he grew up faced so many water challenges despite a high presence of water from rivers, consistent rainfall, and streams bursting from the ground.

Dr Kgosi Mocwagae, Programme Director and Lecturer: Department of Urban and Regional Planning, received his PhD qualification during the October virtual graduation ceremonies.

His study, titled Exploring the Qwaqwa water crisis for effective planning post-apartheid, focuses on the water crisis in the Qwaqwa area, which commenced on 1 January 2016 and saw people without access to clean drinking water from their taps. The community had to turn to alternative means, such as collecting water from government-contracted water tankers, rivers, emergency hydrants, and wells.

Understanding the water crisis

Dr Mocwagae says the reason why he took up this study was because at a young age, he could not understand why the community in which he grew up faced so many water challenges despite a high presence of water from rivers, consistent rainfall, and streams bursting from the ground.
 
In this study, he aimed to explore the history of water policy in South Africa, together with the water crisis in Qwaqwa. He also documented the lived experiences of the affected Qwaqwa communities to determine the effect of not having access to clean drinking water in terms of quality of water, time, money, and distance travelled, to name just a few. 

Dr Mocwagae furthermore assessed interventions by various actors during the Qwaqwa water crisis, which included accessing water from municipally contracted water tankers, streams and rivers, rainwater harvesting, donations, paying for delivery of water, boreholes, and emergency water hydrants intended for fire breakouts. He also investigated the implications of the Qwaqwa water crisis for effective planning in post-apartheid South Africa.

He states: “Despite reports from the government that the Qwaqwa water crisis was an issue from 2015 and a result of drought, the study proved differently.” 

Water crisis due to poor planning

“Firstly, the water crisis was a cumulative effect of poor water planning since the founding of Qwaqwa as a homeland in 1974. Further to this, Qwaqwa has not been able to sufficiently provide water to the community from 1974 to date.”

Dr Mocwagae continues: “A major contributing factor to the water crisis was that the three dams in the area were still performing their primary functions as established during apartheid. Planning would have to be done to reprioritise water to Qwaqwa.

He also found that the municipality had not planned and invested in the maintenance and development of water infrastructure to provide water. 

The study was also able to demonstrate that there is a form of socialisation in planning that does not prioritise the community of Qwaqwa. In this community, more than 50% of the people live in poverty. According to Dr Mocwagae’s findings, the idea exists that the community first needs to be viewed a worthy economic contributor in order for them to benefit from water that originates from Qwaqwa. 

“Alternative means of accessing water and water-use education are also needed as part of the process of resolving the Qwaqwa water crisis,” says Dr Mocwagae. 

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept