Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Kgosi Mocwagae explored the Qwaqwa water crisis because at a young age, he could not understand why the community in which he grew up faced so many water challenges despite a high presence of water from rivers, consistent rainfall, and streams bursting from the ground.

Dr Kgosi Mocwagae, Programme Director and Lecturer: Department of Urban and Regional Planning, received his PhD qualification during the October virtual graduation ceremonies.

His study, titled Exploring the Qwaqwa water crisis for effective planning post-apartheid, focuses on the water crisis in the Qwaqwa area, which commenced on 1 January 2016 and saw people without access to clean drinking water from their taps. The community had to turn to alternative means, such as collecting water from government-contracted water tankers, rivers, emergency hydrants, and wells.

Understanding the water crisis

Dr Mocwagae says the reason why he took up this study was because at a young age, he could not understand why the community in which he grew up faced so many water challenges despite a high presence of water from rivers, consistent rainfall, and streams bursting from the ground.
 
In this study, he aimed to explore the history of water policy in South Africa, together with the water crisis in Qwaqwa. He also documented the lived experiences of the affected Qwaqwa communities to determine the effect of not having access to clean drinking water in terms of quality of water, time, money, and distance travelled, to name just a few. 

Dr Mocwagae furthermore assessed interventions by various actors during the Qwaqwa water crisis, which included accessing water from municipally contracted water tankers, streams and rivers, rainwater harvesting, donations, paying for delivery of water, boreholes, and emergency water hydrants intended for fire breakouts. He also investigated the implications of the Qwaqwa water crisis for effective planning in post-apartheid South Africa.

He states: “Despite reports from the government that the Qwaqwa water crisis was an issue from 2015 and a result of drought, the study proved differently.” 

Water crisis due to poor planning

“Firstly, the water crisis was a cumulative effect of poor water planning since the founding of Qwaqwa as a homeland in 1974. Further to this, Qwaqwa has not been able to sufficiently provide water to the community from 1974 to date.”

Dr Mocwagae continues: “A major contributing factor to the water crisis was that the three dams in the area were still performing their primary functions as established during apartheid. Planning would have to be done to reprioritise water to Qwaqwa.

He also found that the municipality had not planned and invested in the maintenance and development of water infrastructure to provide water. 

The study was also able to demonstrate that there is a form of socialisation in planning that does not prioritise the community of Qwaqwa. In this community, more than 50% of the people live in poverty. According to Dr Mocwagae’s findings, the idea exists that the community first needs to be viewed a worthy economic contributor in order for them to benefit from water that originates from Qwaqwa. 

“Alternative means of accessing water and water-use education are also needed as part of the process of resolving the Qwaqwa water crisis,” says Dr Mocwagae. 

News Archive

UFS researchers are producing various flavour and fragrance compounds
2015-05-27

 

The minty-fresh smell after brushing your teeth, the buttery flavour on your popcorn and your vanilla-scented candles - these are mostly flavour and fragrance compounds produced synthetically in a laboratory and the result of many decades of research.

This research, in the end, is what will be important to reproduce these fragrances synthetically for use in the food and cosmetic industries.

Prof Martie Smit, Academic Head of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, and her colleague Dr Dirk Opperman, currently have a team of postgraduate students working on the production of various flavour and fragrance compounds from cheap and abundantly available natural raw materials. 

Prof Smit explains that most of the flavours and fragrances that we smell every day, originally come from natural compounds produced mainly by plants.

“However, because these compounds are often produced in very low concentrations by plants, many of these compounds are today replaced with synthetically-manufactured versions. In recent times, there is an increasing negative view among consumers of such synthetic flavour and fragrance compounds.”

On the other hand, aroma chemicals produced by biotechnological methods, are defined as natural according to European Union and Food and Drug Administration (USA) legal definitions, provided that the raw materials used are of natural origin.  Additionally, the environmental impact and carbon footprint associated with biotech-produced aroma chemicals are often also smaller than those associated with synthetically-produced compounds or those extracted by traditional methods from agricultural sources.

During the last four years, the team investigated processes for rose fragrance, vanilla flavour, mint and spearmint flavours, as well as butter flavour. They are greatly encouraged by the fact that one of these processes is currently being commercialised by a small South African natural aroma chemicals company. Their research is funded by the Department of Science and Technology and the National Research Foundation through the South African Biocatalysis Initiative, the DST-NRF Centre of Excellence in Catalysis and the Technology Innovation Agency, while the UFS has also made a significant investment in this research.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept