Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 October 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Kgosi Mocwagae explored the Qwaqwa water crisis because at a young age, he could not understand why the community in which he grew up faced so many water challenges despite a high presence of water from rivers, consistent rainfall, and streams bursting from the ground.

Dr Kgosi Mocwagae, Programme Director and Lecturer: Department of Urban and Regional Planning, received his PhD qualification during the October virtual graduation ceremonies.

His study, titled Exploring the Qwaqwa water crisis for effective planning post-apartheid, focuses on the water crisis in the Qwaqwa area, which commenced on 1 January 2016 and saw people without access to clean drinking water from their taps. The community had to turn to alternative means, such as collecting water from government-contracted water tankers, rivers, emergency hydrants, and wells.

Understanding the water crisis

Dr Mocwagae says the reason why he took up this study was because at a young age, he could not understand why the community in which he grew up faced so many water challenges despite a high presence of water from rivers, consistent rainfall, and streams bursting from the ground.
 
In this study, he aimed to explore the history of water policy in South Africa, together with the water crisis in Qwaqwa. He also documented the lived experiences of the affected Qwaqwa communities to determine the effect of not having access to clean drinking water in terms of quality of water, time, money, and distance travelled, to name just a few. 

Dr Mocwagae furthermore assessed interventions by various actors during the Qwaqwa water crisis, which included accessing water from municipally contracted water tankers, streams and rivers, rainwater harvesting, donations, paying for delivery of water, boreholes, and emergency water hydrants intended for fire breakouts. He also investigated the implications of the Qwaqwa water crisis for effective planning in post-apartheid South Africa.

He states: “Despite reports from the government that the Qwaqwa water crisis was an issue from 2015 and a result of drought, the study proved differently.” 

Water crisis due to poor planning

“Firstly, the water crisis was a cumulative effect of poor water planning since the founding of Qwaqwa as a homeland in 1974. Further to this, Qwaqwa has not been able to sufficiently provide water to the community from 1974 to date.”

Dr Mocwagae continues: “A major contributing factor to the water crisis was that the three dams in the area were still performing their primary functions as established during apartheid. Planning would have to be done to reprioritise water to Qwaqwa.

He also found that the municipality had not planned and invested in the maintenance and development of water infrastructure to provide water. 

The study was also able to demonstrate that there is a form of socialisation in planning that does not prioritise the community of Qwaqwa. In this community, more than 50% of the people live in poverty. According to Dr Mocwagae’s findings, the idea exists that the community first needs to be viewed a worthy economic contributor in order for them to benefit from water that originates from Qwaqwa. 

“Alternative means of accessing water and water-use education are also needed as part of the process of resolving the Qwaqwa water crisis,” says Dr Mocwagae. 

News Archive

Plant eco-physiologist finds effective solutions for crop optimisation
2016-07-24

Description: Orange trees Tags: Orange trees

The bio-stimulant was tested on
this citrus. This is the first time
that the product has been tested
on a crop.

In a time characterised by society facing increasing population growth, food crises, and extreme climatic conditions such as drought, it is essential for farmers to integrate science with their work practices in order to optimise crops.

Role of photosynthesis and plant sap data

By knowing how to use photosynthesis and plant sap data for determining plant health, fast and effective solutions could be established for the optimisation of crops. This technique, which could help farmers utilise every bit of usable land effectively, is the focus of Marguerite Westcott’s PhD study. She is a junior lecturer and plant eco-physiologist in die Department of Plant Sciences at the University of the Free State.

Westcott uses this technique in her studies to prove that a newly-developed bio-stimulant stimulates plants in order to metabolise water and other nutrients better, yielding increased crops as a result.

Agricultural and mining sectors benefit from research

The greatest part of these projects focuses on the agricultural sector. Westcott and a colleague, Dr Gert Marais, are researching the physiology of pecan and citrus trees in order to optimise the growth of these crops, thus minimising disease through biological methods. Field trials are being conducted in actively-producing orchards in the Hartswater and Patensie areas in conjunction with the South African Pecan Nut Producers Association (SAPPA) amongst others.
 
The principles that Westcott applies in her research are also used in combination with the bio-stimulant in other studies on disturbed soil, such as mine-dump material, for establishing plants in areas where they would not grow normally. This is an economical way for both the agricultural and mining sectors to improve nutrient absorption, stimulate growth, and contribute to the sustainable utilisation of the soil.

Description: Pecan nut orchards  Tags: Pecan nut orchards

The bio-stimulant contributes to the immunity of the plants.
It was tested in these pecan nut orchards (Hartswater).

Soil rehabilitation key aspect in research projects

“One of two things is happening in my research projects. Either the soil is rehabilitated to bring about the optimal growth of a plant, or the plants are used to rehabilitate the soil,” says Westcott.

Data surveys for her PhD studies began in 2015. “This will be a long-term project in which seasonal data will be collected continuously. The first set of complete field data, together with pot trial data, will be completed after the current crop harvest,” says Westcott.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept