Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 October 2020 | Story Thabo Kessah | Photo Supplied
Siphamandla Shabangu hopes to develop intercontinental networks during the Qatar University webinar.

“Assume you are in a leadership position, what can you do to improve the future of higher education?”
This is one of the questions Qwaqwa Campus SRC member, Siphamandla Shabangu, will be discussing during an international webinar to be hosted by Qatar University on Monday 5 October 2020. He will represent the University of the Free State, South Africa, and the African continent as a panellist to discuss the topic: Preparing for an Unpredictable Future: Global Insights from Higher Education Students. 

“Words to describe how it feels to represent not only my campus or institution, but the whole South African nation can never express this new feeling I have,” said Siphamandla. “I have never been afforded such an auspicious opportunity. This is indeed a new feeling for me, and I will do my best to turn it into a habit. I am honoured to have been selected to represent South Africa in a global academic and leadership space. I am a proud UFS ambassador and hope to one day become the face of the University of the Free State,” he added.

Tough selection process

Siphamandla revealed that the process of selection started with the Career Development office on campus. “I was selected among many greater minds on the Qwaqwa Campus. Fortunately, I further prospered among students across all three campuses of the University of the Free State, and finally became one of the best among the greats. Now, I am proud to be part of six unique panellists from different countries to unpack the impact of COVID-19 on institutions of higher learning. In fact, it is a prestigious honour to be the only African panellist – black African for that matter – in this global panel discussion,” he said.

Looking forward to the webinar

“I would very much like to acquire student lived experiences from countries outside the continent during the COVID-19 pandemic. I am also interested to know what methods of learning are sustainably applied at higher learning institutions from the perspectives of developing and highly developed countries. Moreover, I am eager to find out as to what leadership-inspired methods work best in different continents within the educational space that is gradually consumed by the Fourth Industrial Revolution. Furthermore, I am looking forward to developing international and intercontinental networks that will equip me to best explore opportunities across the globe. The academic space is dominated by intellects, visionaries, hustlers, lifelong learners, problem solvers, and even creative thinkers such as artists. However, it is within us to broaden the potential we have in life. It would be gratifying to know higher education systems from other prominent countries,” said Siphamandla.

The panel discussion will take place on Monday 5 October from 12:00 to13:00 (South African time). Other panellists are from the United Kingdom, Russia, Japan, Turkey, and Qatar. 

Siphamandla is currently serving as the SRC member responsible for Universal Access and Social Justice Council.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept