Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 October 2020 | Story Thabo Kessah | Photo Supplied
Siphamandla Shabangu hopes to develop intercontinental networks during the Qatar University webinar.

“Assume you are in a leadership position, what can you do to improve the future of higher education?”
This is one of the questions Qwaqwa Campus SRC member, Siphamandla Shabangu, will be discussing during an international webinar to be hosted by Qatar University on Monday 5 October 2020. He will represent the University of the Free State, South Africa, and the African continent as a panellist to discuss the topic: Preparing for an Unpredictable Future: Global Insights from Higher Education Students. 

“Words to describe how it feels to represent not only my campus or institution, but the whole South African nation can never express this new feeling I have,” said Siphamandla. “I have never been afforded such an auspicious opportunity. This is indeed a new feeling for me, and I will do my best to turn it into a habit. I am honoured to have been selected to represent South Africa in a global academic and leadership space. I am a proud UFS ambassador and hope to one day become the face of the University of the Free State,” he added.

Tough selection process

Siphamandla revealed that the process of selection started with the Career Development office on campus. “I was selected among many greater minds on the Qwaqwa Campus. Fortunately, I further prospered among students across all three campuses of the University of the Free State, and finally became one of the best among the greats. Now, I am proud to be part of six unique panellists from different countries to unpack the impact of COVID-19 on institutions of higher learning. In fact, it is a prestigious honour to be the only African panellist – black African for that matter – in this global panel discussion,” he said.

Looking forward to the webinar

“I would very much like to acquire student lived experiences from countries outside the continent during the COVID-19 pandemic. I am also interested to know what methods of learning are sustainably applied at higher learning institutions from the perspectives of developing and highly developed countries. Moreover, I am eager to find out as to what leadership-inspired methods work best in different continents within the educational space that is gradually consumed by the Fourth Industrial Revolution. Furthermore, I am looking forward to developing international and intercontinental networks that will equip me to best explore opportunities across the globe. The academic space is dominated by intellects, visionaries, hustlers, lifelong learners, problem solvers, and even creative thinkers such as artists. However, it is within us to broaden the potential we have in life. It would be gratifying to know higher education systems from other prominent countries,” said Siphamandla.

The panel discussion will take place on Monday 5 October from 12:00 to13:00 (South African time). Other panellists are from the United Kingdom, Russia, Japan, Turkey, and Qatar. 

Siphamandla is currently serving as the SRC member responsible for Universal Access and Social Justice Council.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept