Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2020 | Story Leonie Bolleurs | Photo Supplied
Kyla Dooley, runner-up in this year’s Three-minute thesis competition, wants to pursue a career working alongside police enforcement, using her knowledge of forensics to solve criminal cases and convict perpetrators.

When rapes and sexual assaults are committed, DNA evidence can play a large role in convicting the offenders. DNA evidence collected from sexual crimes can, according to Kyla Dooley, often be tricky to analyse.

Kyla has just completed her master’s degree, specialising in Forensic Genetics, at the University of the Free State (UFS). She not only thrives in this field – graduating at the top of the Faculty of Natural and Agricultural Sciences in 2018 when she was awarded the Dean’s Medal – but her work also brought her the runner-up position in this year’s Three-minute thesis competition. 

She talked about her research on the use of male-specific DNA in the analysis of DNA evidence collected after crimes of a sexual nature have been committed.

Explaining her research, Kyla elaborates: “In most cases, the victim is female, while the offender is male. Therefore, the evidence is often a mixture of male and female DNA and this can make it difficult to analyse the male DNA and match it to a male suspect.”

She believes the solution to this is to target male-specific DNA in analysis. “This eliminates all female DNA and simplifies the process,” says Kyla.

“Unfortunately, male-specific DNA technology is not currently used in South Africa, because the DNA regions tested to date haven’t shown much success in distinguishing between males in our population,” Kyla points out.

“The goal is now to use DNA evidence, to match it to a suspect, and have the confidence that it came from him and only him. Or else defence lawyers could argue that it came from someone else in the population,” she says.

Improving DNA evidence

Therefore, Kyla’s research focused on evaluating a new group of male-specific DNA regions, which are to be tested yet, to see if it would be a viable option for use in South Africa. 

“I achieved this by collecting DNA samples from men on campus, processing them to obtain DNA profiles, and then determining how well these regions can distinguish between the men. The results of my research demonstrate the potential of these DNA regions to improve the use of DNA evidence when investigating sexual assaults in South Africa,” says Kyla.

She believes her study can play a role in increasing the conviction rate of sexual offenders, which could lead to a reduction in South Africa’s alarmingly high rape statistic. 

“Everyone in South Africa is affected by this horrific crime in some way or another, so the benefits of this would be widespread,” she says.

Solving crimes

Although Kyla will one day pursue further studies, she is ready for the next stage in her life. “I am in the process of applying for jobs and getting ready to dive into the real world. I’ll definitely be pursuing a career working alongside police enforcement to solve criminal cases and convict perpetrators of such crimes. Working for the NYPD in the USA or Scotland Yard in the UK is the ultimate dream job,” she says.

“I chose my field not only because the forensics world absolutely fascinates me, but also because I want to make a difference. I want to play a role in getting justice for those affected by violent crimes. One simple process in a forensic scientist’s everyday routine could be a life changer for a victim of crime,” believes Kyla.

 

 


News Archive

Heart-valve studies receive international recognition
2017-07-11

 Description: Heart-valve studies  Tags: Heart-valve studies  

Prof Francis Smit, Head of the Department of
Cardiothoracic Surgery at the UFS, and Manager of the
Robert WM Frater Cardiovascular Research Centre, with
Kyle Davis, Mechanical Engineer at the centre.

Photo: Rulanzen Martin

Three heart-valve studies which have been developed at the Robert WM Frater Cardiovascular Research Centre at the School of Medicine at the University of the Free State (UFS) were recently presented in Monte Carlo at the conference of the prestigious global Heart Valve Society (HVS).

These studies are all headed by Prof Francis Smit, Head of the Department of Cardiothoracic Surgery at the UFS, and Manager of the Robert WM Frater Cardiovascular Research Centre.
Prof Smit says the HVS is a combination of the former heart-valve societies of Europe and the US. “Studies on heart-valve disease, heart-valve-related products and operations, as well as the design and development of new valves were presented. There are both clinical and development divisions.

He says the study in which the hemodynamics of their redesigned mechanical poppet valve was compared to a commercial bi-leaflet mechanical heart valve, was named as the best poster presentation in the experimental valve development and numerical flow dynamics division. The study, which was presented by Kyle Davis, mechanical engineer at the centre, competed against some of the best heart-valve research units in the world.

The redesigned valve, based on the 1960s Cape Town poppet valve, has the potential to provide a low-cost solution for mechanical heart-valve replacement. It is possible to produce the titanium ring with 3-D printers and is, together with the silicon poppet valve, extremely inexpensive compared to current mechanical valve-manufacturing processes.
The advantages of this valve over current mechanical valves is that, due to the effective and laminar flow characteristics, as well as the simple locking mechanisms, there is a reduced chance of valve thrombosis, and the need for anti-clotting drugs is therefore limited.

It was also confirmed that the new valve more than meets the published FDA (Federal Drug Agency) requirements, which determine the minimum standards of valves for human use in the US.

The redesigned valve also has a very low platelet activation impact, which is responsible for platelet thrombosis and leads to valve thrombosis or strokes. This valve is another heart-valve project by the centre, which is also in the process of evaluating a tri-leaflet polyurethane valve developed by them.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept