Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2020 | Story Leonie Bolleurs | Photo Supplied
Kyla Dooley, runner-up in this year’s Three-minute thesis competition, wants to pursue a career working alongside police enforcement, using her knowledge of forensics to solve criminal cases and convict perpetrators.

When rapes and sexual assaults are committed, DNA evidence can play a large role in convicting the offenders. DNA evidence collected from sexual crimes can, according to Kyla Dooley, often be tricky to analyse.

Kyla has just completed her master’s degree, specialising in Forensic Genetics, at the University of the Free State (UFS). She not only thrives in this field – graduating at the top of the Faculty of Natural and Agricultural Sciences in 2018 when she was awarded the Dean’s Medal – but her work also brought her the runner-up position in this year’s Three-minute thesis competition. 

She talked about her research on the use of male-specific DNA in the analysis of DNA evidence collected after crimes of a sexual nature have been committed.

Explaining her research, Kyla elaborates: “In most cases, the victim is female, while the offender is male. Therefore, the evidence is often a mixture of male and female DNA and this can make it difficult to analyse the male DNA and match it to a male suspect.”

She believes the solution to this is to target male-specific DNA in analysis. “This eliminates all female DNA and simplifies the process,” says Kyla.

“Unfortunately, male-specific DNA technology is not currently used in South Africa, because the DNA regions tested to date haven’t shown much success in distinguishing between males in our population,” Kyla points out.

“The goal is now to use DNA evidence, to match it to a suspect, and have the confidence that it came from him and only him. Or else defence lawyers could argue that it came from someone else in the population,” she says.

Improving DNA evidence

Therefore, Kyla’s research focused on evaluating a new group of male-specific DNA regions, which are to be tested yet, to see if it would be a viable option for use in South Africa. 

“I achieved this by collecting DNA samples from men on campus, processing them to obtain DNA profiles, and then determining how well these regions can distinguish between the men. The results of my research demonstrate the potential of these DNA regions to improve the use of DNA evidence when investigating sexual assaults in South Africa,” says Kyla.

She believes her study can play a role in increasing the conviction rate of sexual offenders, which could lead to a reduction in South Africa’s alarmingly high rape statistic. 

“Everyone in South Africa is affected by this horrific crime in some way or another, so the benefits of this would be widespread,” she says.

Solving crimes

Although Kyla will one day pursue further studies, she is ready for the next stage in her life. “I am in the process of applying for jobs and getting ready to dive into the real world. I’ll definitely be pursuing a career working alongside police enforcement to solve criminal cases and convict perpetrators of such crimes. Working for the NYPD in the USA or Scotland Yard in the UK is the ultimate dream job,” she says.

“I chose my field not only because the forensics world absolutely fascinates me, but also because I want to make a difference. I want to play a role in getting justice for those affected by violent crimes. One simple process in a forensic scientist’s everyday routine could be a life changer for a victim of crime,” believes Kyla.

 

 


News Archive

UFS receives R3,284 million to research biosafety of genetically modified crops
2009-03-17

A testing facility at the University of the Free State (UFS), which is the only one of its kind in South Africa and a leader in its field in Africa, has received a grant of R3,284 million from the South African National Biodiversity Institute (SANBI) to do research on the biosafety of genetically modified crops in South Africa.

Prof. Chris Viljoen of the Genetically Modified Organisms (GMO) Testing Facility at the UFS says the grant forms part of a collaborative agreement between South Africa and Norway on the biosafety of GMOs.

The grant also makes provision for two M.Sc. bursaries as well as a regional biosafety workshop.

The research will focus on gene flow between genetically modified (GM) maize and non-GM maize and the potential impact thereof on the development of insect resistance.

Prof. Viljoen, who is head of Human Molecular Biology in the Department of Haematology and Cell Biology, says it is an honour to be selected to take part in the project and is groundbreaking in terms of GM maize on the environment. The project was initiated in 2009 and will run until the end of 2010.

The multi-institutional research include partners from the UFS, research groups from the University of North-West, the University of Fort Hare as well as SANBI and GenØk, the Norwegian centre for Gene Ecology. The GMO Testing Facility at the UFS was established in 2003 to perform routine GM detection for grain and food products in South Africa. The activities also include research into GM detection and biosafety of GM crops.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
17 March 2009
 
 
Prof. Chris Viljoen of the Genetically Modified Organisms (GMO) Testing Facility at the UFS.
Photo: Supplied

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept