Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2020 | Story Leonie Bolleurs | Photo Supplied
Kyla Dooley, runner-up in this year’s Three-minute thesis competition, wants to pursue a career working alongside police enforcement, using her knowledge of forensics to solve criminal cases and convict perpetrators.

When rapes and sexual assaults are committed, DNA evidence can play a large role in convicting the offenders. DNA evidence collected from sexual crimes can, according to Kyla Dooley, often be tricky to analyse.

Kyla has just completed her master’s degree, specialising in Forensic Genetics, at the University of the Free State (UFS). She not only thrives in this field – graduating at the top of the Faculty of Natural and Agricultural Sciences in 2018 when she was awarded the Dean’s Medal – but her work also brought her the runner-up position in this year’s Three-minute thesis competition. 

She talked about her research on the use of male-specific DNA in the analysis of DNA evidence collected after crimes of a sexual nature have been committed.

Explaining her research, Kyla elaborates: “In most cases, the victim is female, while the offender is male. Therefore, the evidence is often a mixture of male and female DNA and this can make it difficult to analyse the male DNA and match it to a male suspect.”

She believes the solution to this is to target male-specific DNA in analysis. “This eliminates all female DNA and simplifies the process,” says Kyla.

“Unfortunately, male-specific DNA technology is not currently used in South Africa, because the DNA regions tested to date haven’t shown much success in distinguishing between males in our population,” Kyla points out.

“The goal is now to use DNA evidence, to match it to a suspect, and have the confidence that it came from him and only him. Or else defence lawyers could argue that it came from someone else in the population,” she says.

Improving DNA evidence

Therefore, Kyla’s research focused on evaluating a new group of male-specific DNA regions, which are to be tested yet, to see if it would be a viable option for use in South Africa. 

“I achieved this by collecting DNA samples from men on campus, processing them to obtain DNA profiles, and then determining how well these regions can distinguish between the men. The results of my research demonstrate the potential of these DNA regions to improve the use of DNA evidence when investigating sexual assaults in South Africa,” says Kyla.

She believes her study can play a role in increasing the conviction rate of sexual offenders, which could lead to a reduction in South Africa’s alarmingly high rape statistic. 

“Everyone in South Africa is affected by this horrific crime in some way or another, so the benefits of this would be widespread,” she says.

Solving crimes

Although Kyla will one day pursue further studies, she is ready for the next stage in her life. “I am in the process of applying for jobs and getting ready to dive into the real world. I’ll definitely be pursuing a career working alongside police enforcement to solve criminal cases and convict perpetrators of such crimes. Working for the NYPD in the USA or Scotland Yard in the UK is the ultimate dream job,” she says.

“I chose my field not only because the forensics world absolutely fascinates me, but also because I want to make a difference. I want to play a role in getting justice for those affected by violent crimes. One simple process in a forensic scientist’s everyday routine could be a life changer for a victim of crime,” believes Kyla.

 

 


News Archive

Researchers focus on parrots, poultry and phage therapy
2014-10-10

Photo: en.wikipedia

Veterinary biotechnology focuses on microbial and molecular biological approaches to veterinary illnesses. The group working on veterinary biotechnology research at the University of the Free State (UFS) consists of two academic staff members, Prof Rob Bragg and Dr Charlotte Boucher, two post-doctoral fellows, Drs Chris Theron and Arina Hitzeroth, five PhD and three honours students.

The group has three research focus areas.

Dr Boucher says, “Our main focus area is infectious coryza in poultry, caused by the bacterium Avibacterium paragalliarum. The aim is the control of the disease, mainly through improvement of vaccines, understanding the immune response and improved biosecurity. A key objective is improving methods for serotyping; studying of selected surface antigens and investigating the influence recently discovered bacteriophages might have on virulence. We have co-operative projects with research groups in China, India and Israel.

“The second focus area is an expression system co-developed with the National Institute for Agronomic Research (INRA), France. The flagship project is the expression of the coat protein gene of the beak and feather disease virus, a disease affecting parrots, currently threatening the endangered Cape parrot. This system has led to the development of serological tests, currently under patenting. The application of this system has been extended to human-related diseases, with two interdisciplinary projects underway, co-working with Profs Muriel Meiring and Felicity Burt. Prof Meiring is working on diseases causing bleeding disorders, such as blood-clotting impairment, while Prof Burt is working on viral infections causing haemorrhagic (bleeding) disorders.

“We are also researching disease control in a post-antibiotic era, investigating the potential of phage-therapy by targeting and destroying pathogenic islands within a host, with reduced side-effects on the host itself.

“We have smaller projects, including an interdisciplinary project with Zoology, looking at the protein profile of amphibian (frog) secretions with the focus on antimicrobial activity, as these secretions assist with protecting amphibian skin against infections.”  


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept