Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2020 | Story Leonie Bolleurs | Photo Supplied
Kyla Dooley, runner-up in this year’s Three-minute thesis competition, wants to pursue a career working alongside police enforcement, using her knowledge of forensics to solve criminal cases and convict perpetrators.

When rapes and sexual assaults are committed, DNA evidence can play a large role in convicting the offenders. DNA evidence collected from sexual crimes can, according to Kyla Dooley, often be tricky to analyse.

Kyla has just completed her master’s degree, specialising in Forensic Genetics, at the University of the Free State (UFS). She not only thrives in this field – graduating at the top of the Faculty of Natural and Agricultural Sciences in 2018 when she was awarded the Dean’s Medal – but her work also brought her the runner-up position in this year’s Three-minute thesis competition. 

She talked about her research on the use of male-specific DNA in the analysis of DNA evidence collected after crimes of a sexual nature have been committed.

Explaining her research, Kyla elaborates: “In most cases, the victim is female, while the offender is male. Therefore, the evidence is often a mixture of male and female DNA and this can make it difficult to analyse the male DNA and match it to a male suspect.”

She believes the solution to this is to target male-specific DNA in analysis. “This eliminates all female DNA and simplifies the process,” says Kyla.

“Unfortunately, male-specific DNA technology is not currently used in South Africa, because the DNA regions tested to date haven’t shown much success in distinguishing between males in our population,” Kyla points out.

“The goal is now to use DNA evidence, to match it to a suspect, and have the confidence that it came from him and only him. Or else defence lawyers could argue that it came from someone else in the population,” she says.

Improving DNA evidence

Therefore, Kyla’s research focused on evaluating a new group of male-specific DNA regions, which are to be tested yet, to see if it would be a viable option for use in South Africa. 

“I achieved this by collecting DNA samples from men on campus, processing them to obtain DNA profiles, and then determining how well these regions can distinguish between the men. The results of my research demonstrate the potential of these DNA regions to improve the use of DNA evidence when investigating sexual assaults in South Africa,” says Kyla.

She believes her study can play a role in increasing the conviction rate of sexual offenders, which could lead to a reduction in South Africa’s alarmingly high rape statistic. 

“Everyone in South Africa is affected by this horrific crime in some way or another, so the benefits of this would be widespread,” she says.

Solving crimes

Although Kyla will one day pursue further studies, she is ready for the next stage in her life. “I am in the process of applying for jobs and getting ready to dive into the real world. I’ll definitely be pursuing a career working alongside police enforcement to solve criminal cases and convict perpetrators of such crimes. Working for the NYPD in the USA or Scotland Yard in the UK is the ultimate dream job,” she says.

“I chose my field not only because the forensics world absolutely fascinates me, but also because I want to make a difference. I want to play a role in getting justice for those affected by violent crimes. One simple process in a forensic scientist’s everyday routine could be a life changer for a victim of crime,” believes Kyla.

 

 


News Archive

Chemistry Department expands its international footprint
2015-10-14

Prof André Roodt

Prof André Roodt from the Department of Chemistry at the University of the Free State has returned from a research visit at the St Petersburg State University in Russia. The research he conducted at the St Petersburg State University is part of a bilateral collaboration agreement between the University of the Free State and St Petersburg State University.

As part of his visit to Russia (from 17 to 28 September 2015), Prof Roodt presented a seminar at St Petersburg State University, and a lecture at the conference titled: International conference on Organometallic and Coordination Chemistry: Achievements and Challenges.

One of the local Russian newspapers quoted Prof Roodt as “world-renowned expert in the study of chemical kinetics and mechanisms of chemical reactions”. His presentation: Are detailed reaction mechanisms really necessary in (applied) organometallic and coordination chemistry' attracted great interest from the St Petersburg chemists.

The bilateral agreement came to life a year ago when the St Petersburg State University chemists won a grant in a competition to create an international research group, the International Laboratory of Organometallic Chemistry. The Laboratory is headed by Prof Vadim Kukushkin of the St Petersburg State University.

In addition to the employees of St Petersburg University, the research group consists of researchers from Portugal, Finland, South Africa, and Azerbaijan. Together, these groups of scientists are working on the problem of non-reactive metal activation molecules. The main theme of the research laboratory is in the catalysis and activation of metal inert molecules which then undergo significant change, and become meaningful to people chemicals, such as drugs.

As part of this initiative, a bilateral collaboration agreement exists between the St Petersburg State University and the UFS (Russian Science Foundation grant 14-43-00017). Students from our university have visited and conducted research at the St Petersburg State University while some of their students visit and research reaction kinetics at the UFS.

Prof Roodt hosted Valeria Burianova, a student from the St Petersburg University. During her visit at the UFS, she learned about response kinetics. A UFS PhD student, Carla Pretorius, joined the group in Russia where she conducted research on the intermetallic rhodium-rhodium interactions for the formation of nano-wires and -plates, with applications in the micro-electronics industry, and a  potential for harvesting sun energy.

The UFS Department of Chemistry extended its international footprint further with three of its students, Mampotsu Tsosane, Petrus Mokolokolo, and Tom Kama, returning from Switzerland after a six-week research visit in the group of Prof Roger Alberto from the University of Zürich. In return, Prof Roodt hosted a Swiss PhD student, Angelo Frei from Zürich, and taught him more about reaction mechanisms.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept