Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2020 | Story Leonie Bolleurs | Photo Supplied
Kyla Dooley, runner-up in this year’s Three-minute thesis competition, wants to pursue a career working alongside police enforcement, using her knowledge of forensics to solve criminal cases and convict perpetrators.

When rapes and sexual assaults are committed, DNA evidence can play a large role in convicting the offenders. DNA evidence collected from sexual crimes can, according to Kyla Dooley, often be tricky to analyse.

Kyla has just completed her master’s degree, specialising in Forensic Genetics, at the University of the Free State (UFS). She not only thrives in this field – graduating at the top of the Faculty of Natural and Agricultural Sciences in 2018 when she was awarded the Dean’s Medal – but her work also brought her the runner-up position in this year’s Three-minute thesis competition. 

She talked about her research on the use of male-specific DNA in the analysis of DNA evidence collected after crimes of a sexual nature have been committed.

Explaining her research, Kyla elaborates: “In most cases, the victim is female, while the offender is male. Therefore, the evidence is often a mixture of male and female DNA and this can make it difficult to analyse the male DNA and match it to a male suspect.”

She believes the solution to this is to target male-specific DNA in analysis. “This eliminates all female DNA and simplifies the process,” says Kyla.

“Unfortunately, male-specific DNA technology is not currently used in South Africa, because the DNA regions tested to date haven’t shown much success in distinguishing between males in our population,” Kyla points out.

“The goal is now to use DNA evidence, to match it to a suspect, and have the confidence that it came from him and only him. Or else defence lawyers could argue that it came from someone else in the population,” she says.

Improving DNA evidence

Therefore, Kyla’s research focused on evaluating a new group of male-specific DNA regions, which are to be tested yet, to see if it would be a viable option for use in South Africa. 

“I achieved this by collecting DNA samples from men on campus, processing them to obtain DNA profiles, and then determining how well these regions can distinguish between the men. The results of my research demonstrate the potential of these DNA regions to improve the use of DNA evidence when investigating sexual assaults in South Africa,” says Kyla.

She believes her study can play a role in increasing the conviction rate of sexual offenders, which could lead to a reduction in South Africa’s alarmingly high rape statistic. 

“Everyone in South Africa is affected by this horrific crime in some way or another, so the benefits of this would be widespread,” she says.

Solving crimes

Although Kyla will one day pursue further studies, she is ready for the next stage in her life. “I am in the process of applying for jobs and getting ready to dive into the real world. I’ll definitely be pursuing a career working alongside police enforcement to solve criminal cases and convict perpetrators of such crimes. Working for the NYPD in the USA or Scotland Yard in the UK is the ultimate dream job,” she says.

“I chose my field not only because the forensics world absolutely fascinates me, but also because I want to make a difference. I want to play a role in getting justice for those affected by violent crimes. One simple process in a forensic scientist’s everyday routine could be a life changer for a victim of crime,” believes Kyla.

 

 


News Archive

Groundwater management vital for groundwater sustainability
2016-11-09

Description: Dr Yolanda Kotzé Tags: Dr Yolanda Kotzé

Dr Yolanda Kotzé, Affiliated Researcher in the
UFS Institute for Groundwater Studies, is passionate
about the management of groundwater.
Photo: Rulanzen Martin

An interest in groundwater resource management ignited the spark for a PhD research thesis by Dr Yolanda Kotzé, Affiliated Researcher in the Institute for Groundwater Studies (IGS) at the University of the Free State (UFS).

Her PhD research thesis titled, A Framework for Groundwater Use Authorisations as Part of Groundwater Governance in Water Scarce Areas within South Africa, was the result of her interest in groundwater resource management. Dr Kotzé identified the agricultural sector as one of the major water users, and a decision was made to conduct research within this sector.  

Research funded by Institute for Groundwater Studies
Groundwater is water found underground in cracks and spaces in soil, sand, and rocks. It is stored in, and moves slowly through geological formations of soil, sand, and rocks (aquifers). The National Department of Water and Sanitation was indirectly the client for this research. The research project was funded by the IGS. Given the current drought, effective groundwater resource management can be achieved within all sectors through sustainable abstraction and use without over-abstraction.

“Groundwater can be effectively managed
in the agricultural sector by sustainable use,
monitoring the quantity of groundwater use,
and measuring groundwater levels,”
said Dr Kotzé.

Research addresses improvement of groundwater management
Her promotor, mentor, teacher, and friend, the late Prof Gerrit van Tonder, introduced her to the field of Geohydrology, and especially to groundwater resource management. “With my research, I made a significant contribution to the improvement of groundwater governance and groundwater resource management, as well as to the handling of groundwater use authorisations for irrigation purposes in South Africa,” said Dr Kotzé. With this significant contribution, she attempts to address the phenomenon of poor groundwater allocation and groundwater resource management by means of a framework. The development of this framework has shown the value of action research in an attempt to find a solution to a problem. “Groundwater can be effectively managed in the agricultural sector by sustainable use, monitoring the quantity of groundwater use, and measuring groundwater levels,” said Dr Kotzé.

The methodology of the research consisted primarily of action research, which has a five-phase cyclical process. The research was Dr Kotzé’s application for a PhD in Geohydrology at the UFS in 2012. The research was completed in 2015.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept