Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2020 | Story Leonie Bolleurs | Photo Supplied
Kyla Dooley, runner-up in this year’s Three-minute thesis competition, wants to pursue a career working alongside police enforcement, using her knowledge of forensics to solve criminal cases and convict perpetrators.

When rapes and sexual assaults are committed, DNA evidence can play a large role in convicting the offenders. DNA evidence collected from sexual crimes can, according to Kyla Dooley, often be tricky to analyse.

Kyla has just completed her master’s degree, specialising in Forensic Genetics, at the University of the Free State (UFS). She not only thrives in this field – graduating at the top of the Faculty of Natural and Agricultural Sciences in 2018 when she was awarded the Dean’s Medal – but her work also brought her the runner-up position in this year’s Three-minute thesis competition. 

She talked about her research on the use of male-specific DNA in the analysis of DNA evidence collected after crimes of a sexual nature have been committed.

Explaining her research, Kyla elaborates: “In most cases, the victim is female, while the offender is male. Therefore, the evidence is often a mixture of male and female DNA and this can make it difficult to analyse the male DNA and match it to a male suspect.”

She believes the solution to this is to target male-specific DNA in analysis. “This eliminates all female DNA and simplifies the process,” says Kyla.

“Unfortunately, male-specific DNA technology is not currently used in South Africa, because the DNA regions tested to date haven’t shown much success in distinguishing between males in our population,” Kyla points out.

“The goal is now to use DNA evidence, to match it to a suspect, and have the confidence that it came from him and only him. Or else defence lawyers could argue that it came from someone else in the population,” she says.

Improving DNA evidence

Therefore, Kyla’s research focused on evaluating a new group of male-specific DNA regions, which are to be tested yet, to see if it would be a viable option for use in South Africa. 

“I achieved this by collecting DNA samples from men on campus, processing them to obtain DNA profiles, and then determining how well these regions can distinguish between the men. The results of my research demonstrate the potential of these DNA regions to improve the use of DNA evidence when investigating sexual assaults in South Africa,” says Kyla.

She believes her study can play a role in increasing the conviction rate of sexual offenders, which could lead to a reduction in South Africa’s alarmingly high rape statistic. 

“Everyone in South Africa is affected by this horrific crime in some way or another, so the benefits of this would be widespread,” she says.

Solving crimes

Although Kyla will one day pursue further studies, she is ready for the next stage in her life. “I am in the process of applying for jobs and getting ready to dive into the real world. I’ll definitely be pursuing a career working alongside police enforcement to solve criminal cases and convict perpetrators of such crimes. Working for the NYPD in the USA or Scotland Yard in the UK is the ultimate dream job,” she says.

“I chose my field not only because the forensics world absolutely fascinates me, but also because I want to make a difference. I want to play a role in getting justice for those affected by violent crimes. One simple process in a forensic scientist’s everyday routine could be a life changer for a victim of crime,” believes Kyla.

 

 


News Archive

Chemistry postgraduates tackle crystallography with eminent international researcher
2017-04-04

Description: Dr Alice Brink  Tags: Dr Alice Brink

Department of Chemistry senior lecturer, Dr Alice Brink(left),
hosted outstanding researcher, Prof Elspeth Garman (right)
from the University of Oxford in England to present a
crystallography lecture.
Photo: Rulanzen Martin



“Crystallography forms part of everyday life.” This is according to Prof Elspeth Garman, eminent researcher from the Department of Biochemistry, University of Oxford in England, who was hosted by Dr Alice Brink, Department of Chemistry at the University of the Free State (UFS) Bloemfontein Campus. Prof Garman presented a lecture in the Department of Chemistry, titled ‘104 years of crystallography: What has it taught us and where will it lead’. She also taught the postgraduate students how to refine and mount protein structures in cold cryo conditions at about -173°C.

What is Crystallography?
Crystallography is the scientific technique which allows for the position of atoms to be determined in any matter which is crystalline.
 
“You cannot complete Protein Crystallography without the five key steps, namely obtaining a pure protein, growing the crystal, collecting the data, and finally determining the structure and atomic coordinates,” said Prof Garman. Apart from teaching, she was also here to mentor and have discussions with UFS Prestige Scholars on how to face academic challenges in the professional environment.

Discovery of the first crystal structure of a TB protein

Prof Garman successfully determined the first crystal structure of a Tuberculosis protein (TBNAT), a project that took about 15 years of research. In partnership with the Department of Pharmacology at Oxford University and an outstanding PhD student, Areej Abuhammad, they managed to grow only one TBNAT crystal, one-fiftieth of a millimetre. They also managed to solve the structure and publish it.

Dr Alice Brink, Senior Lecturer in the Department of Chemistry, says, “It’s an incredible privilege to have Prof Garman here and to have her share her wisdom and knowledge so freely with the young academics.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept