Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 October 2020 | Story Andre Damons | Photo Supplied
Dr Potgieter and her team from Beanies4Babies are with women from Westerbloem retirement village, who knit the beanies and socks.

A passion for neonates, especially premature babies, led to an alumna from the University of the Free State (UFS) to co-found Beanies4Babies, an NPO  which provides knitted beanies and socks to all babies admitted to the newborn intensive care unit (NICU) in public hospitals.
Dr Johané Potgieter, a first-year medical intern and co-founder of Beanies4babies, says neonates, especially premature babies, are unable to generate their own heat, and thus are dependent of additional measures to warm them. They have a larger head-to-body surface area which increases their risk for heat loss if the head is not covered. 
According to Dr Potgieter these little miracles have to use all their energy to grow stronger and fight infection instead of generating heat to prevent them from getting too cold. During her studies she was fortunate to learn vital lessons from passionate and vibrant doctors and sisters. One of them, Sr Vanessa Booysen, lit the fire in her heart for neonates, more specifically premature babies, she says.
Need to prevention hypothermia in premature babies and neonates
The dream started in 2018, when she was a 4th-year medical student, doing her first call in the NICU at Pelonomi Tertiary Hospital. “I noticed the need for additional measures to prevent hypothermia in neonates and was eager to actively combat it. I had an amazing idea for a new project, which sadly had little support. I shared my thoughts with my friend, now co-founder, Clarette Cronje.”
“It was challenging, everyone thought this was going to be a once-off donation. However, I knew my dream was too big for limitations like this. After numerous attempts and failures, a door finally opened to liaise with the Mother and Child Academic Hospital (MACAH) Foundation. As they say: ‘Fall seven times, stand up eight’,” says Dr Potgieter. 
The NPO currently provides about 300 packages of knitted beanies and socks a month to all neonates admitted to the NICU in the public hospitals in Bloemfontein and Port Elizabeth. 
The aim is to expand the project nationwide, and according to Dr Potgieter, they are also are launching it in January at Charlotte Maxeke Johannesburg Academic Hospital, where she now works. 
A need exists 
Dr Potgieter says they had always trusted and hoped for something that would change lives but had never imagined it would be on such a scale.  
“There is a need for beanies and socks for these premature babies. We come face to face with this daily and have only scratched the surface. Global statistics for premature births are one in every 10 births. National statistics are one in every seven births. 
“Premature and newborn babies cannot generate their own heat through shivering or adding additional layers of clothing to their skin. They are exposed to the surrounding air and objects, increasing their risk for heat loss. They lose a great deal of heat from their heads, making it of critical importance to cover their heads. A large number of our mothers go into premature labour, with an earlier due date than planned, arriving in an ambulance without a newborn’s clothes. So it is clear that a bigger hand is driving this project,” says Dr Potgieter. 
Also involve the elderly
Beanies4Babies not only focuses on supporting neonates, but also involves the elderly in the community who knit the products for project. “The angels at the old age homes eagerly knit away. But they need wool. Donations for wool and packaging are needed to service hospitals in three provinces (Free State, Eastern Cape and Gauteng).”
“Volunteers and financial support are also needed as operations have been scaled up to ensure efficiency.”
Says Dr Potgieter: “We are privileged to have a dynamic team of doctors, students, sisters and allied health professionals who support our project.”
Beanies4Babies now functions as one of the First 1000 days projects of the MACAH Foundation that aims to optimise the future for the young generation. 
“I am blessed to have the opportunity to do what I love and that is to make a difference.” 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept