Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 October 2020 | Story Andre Damons | Photo Supplied
Dr Potgieter and her team from Beanies4Babies are with women from Westerbloem retirement village, who knit the beanies and socks.

A passion for neonates, especially premature babies, led to an alumna from the University of the Free State (UFS) to co-found Beanies4Babies, an NPO  which provides knitted beanies and socks to all babies admitted to the newborn intensive care unit (NICU) in public hospitals.
Dr Johané Potgieter, a first-year medical intern and co-founder of Beanies4babies, says neonates, especially premature babies, are unable to generate their own heat, and thus are dependent of additional measures to warm them. They have a larger head-to-body surface area which increases their risk for heat loss if the head is not covered. 
According to Dr Potgieter these little miracles have to use all their energy to grow stronger and fight infection instead of generating heat to prevent them from getting too cold. During her studies she was fortunate to learn vital lessons from passionate and vibrant doctors and sisters. One of them, Sr Vanessa Booysen, lit the fire in her heart for neonates, more specifically premature babies, she says.
Need to prevention hypothermia in premature babies and neonates
The dream started in 2018, when she was a 4th-year medical student, doing her first call in the NICU at Pelonomi Tertiary Hospital. “I noticed the need for additional measures to prevent hypothermia in neonates and was eager to actively combat it. I had an amazing idea for a new project, which sadly had little support. I shared my thoughts with my friend, now co-founder, Clarette Cronje.”
“It was challenging, everyone thought this was going to be a once-off donation. However, I knew my dream was too big for limitations like this. After numerous attempts and failures, a door finally opened to liaise with the Mother and Child Academic Hospital (MACAH) Foundation. As they say: ‘Fall seven times, stand up eight’,” says Dr Potgieter. 
The NPO currently provides about 300 packages of knitted beanies and socks a month to all neonates admitted to the NICU in the public hospitals in Bloemfontein and Port Elizabeth. 
The aim is to expand the project nationwide, and according to Dr Potgieter, they are also are launching it in January at Charlotte Maxeke Johannesburg Academic Hospital, where she now works. 
A need exists 
Dr Potgieter says they had always trusted and hoped for something that would change lives but had never imagined it would be on such a scale.  
“There is a need for beanies and socks for these premature babies. We come face to face with this daily and have only scratched the surface. Global statistics for premature births are one in every 10 births. National statistics are one in every seven births. 
“Premature and newborn babies cannot generate their own heat through shivering or adding additional layers of clothing to their skin. They are exposed to the surrounding air and objects, increasing their risk for heat loss. They lose a great deal of heat from their heads, making it of critical importance to cover their heads. A large number of our mothers go into premature labour, with an earlier due date than planned, arriving in an ambulance without a newborn’s clothes. So it is clear that a bigger hand is driving this project,” says Dr Potgieter. 
Also involve the elderly
Beanies4Babies not only focuses on supporting neonates, but also involves the elderly in the community who knit the products for project. “The angels at the old age homes eagerly knit away. But they need wool. Donations for wool and packaging are needed to service hospitals in three provinces (Free State, Eastern Cape and Gauteng).”
“Volunteers and financial support are also needed as operations have been scaled up to ensure efficiency.”
Says Dr Potgieter: “We are privileged to have a dynamic team of doctors, students, sisters and allied health professionals who support our project.”
Beanies4Babies now functions as one of the First 1000 days projects of the MACAH Foundation that aims to optimise the future for the young generation. 
“I am blessed to have the opportunity to do what I love and that is to make a difference.” 

News Archive

Inaugural lecture: Prof Robert Bragg, Dept. of Microbial, Biochemical and Food Biotechnology
2006-05-17



Attending the inaugural lecture were in front from the left Prof Robert Bragg (lecturer at the Department of Microbial, Biochemical and Food Biotechnology) and Frederick Fourie (Rector and Vice-Chancellor).  At the back from the left were Prof James du Preez (Departmental Chairperson:  Department of Microbial, Biochemical and Food Biotechnology) and Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences). Photo: Stephen Collett
 

A summary of an inaugural lecture delivered by Prof Robert Bragg at the University of the Free State:

CONTROL OF INFECTIOUS AVIAN DISEASES – LESSONS FOR MAN?

Prof Robert R Bragg
Department of Microbial, Biochemical and Food Biotechnology
University of the Free State

“Many of the lessons learnt in disease control in poultry will have application on human medicine,” said Prof Robert Bragg, lecturer at the University of the Free State’s (UFS) Department of Microbial, Biochemical and Food Biotechnology during his inaugural lecture.

Prof Bragg said the development of vaccines remains the main stay of disease control in humans as well as in avian species.  Disease control can not rely on vaccination alone and other disease-control options must be examined.  

“With the increasing problems of antibiotic resistance, the use of disinfection and bio security are becoming more important,” he said.

“Avian influenza (AI) is an example of a disease which can spread from birds to humans.  Hopefully this virus will not develop human to human transmission,” said Prof Bragg.

According to Prof Bragg, South Africa is not on the migration route of water birds, which are the main transmitters of AI.  “This makes South Africa one of the countries less likely to get the disease,” he said.

If the AI virus does develop human to human transmission, it could make the 1918 flu pandemic pale into insignificance.  During the 1918 flu pandemic, the virus had a mortality rate of only 3%, yet more than 50 million people died.

Although the AI virus has not developed human-to-human transmission, all human cases have been related to direct contact with infected birds. The mortality rate in humans who have contracted this virus is 67%.

“Apart from the obvious fears for the human population, this virus is a very serious poultry pathogen and can cause 100% mortality in poultry populations.  Poultry meat and egg production is the staple protein source in most countries around the world. The virus is currently devastating the poultry industry world-wide,” said Prof Bragg.

Prof Bragg’s research activities on avian diseases started off with the investigation of diseases in poultry.  “The average life cycle of a broiler chicken is 42 days.  After this short time, they are slaughtered.  As a result of the short generation time in poultry, one can observe changes in microbial populations as a result of the use of vaccines, antibiotics and disinfectants,” said Prof Bragg.   

“Much of my research effort has been directed towards the control of infectious coryza in layers, which is caused by the bacterium Avibacterium paragallinarum.  This disease is a type of sinusitis in the layer chickens and can cause a drop in egg product of up to 40%,” said Prof Bragg.

The vaccines used around the world in an attempt to control this disease are all inactivated vaccines. One of the most important points is the selection of the correct strains of the bacterium to use in the vaccine.

Prof Bragg established that in South Africa, there are four different serovars of the bacterium and one of these, the serovar C-3 strain, was believed to be unique to Southern Africa. He also recently discovered this serovar for the first time in Israel, thus indicating that this serovar might have a wider distribution than originally believed.

Vaccines used in this country did not contain this serovar.  Prof Bragg established that the long term use of vaccines not containing the local South African strain resulted in a shift in the population distribution of the pathogen.

Prof Bragg’s research activities also include disease control in parrots and pigeons.   “One of the main research projects in my group is on the disease in parrots caused by the circovirus Beak and Feather Disease virus. This virus causes serious problems in the parrot breeding industry in this country. This virus is also threatening the highly endangered and endemic Cape Parrot,” said Prof Bragg.

Prof Bragg’s research group is currently working on the development of a DNA vaccine which will assist in the control of the disease, not only in the parrot breeding industry, but also to help the highly endangered Cape Parrot in its battle for survival.

“Not all of our research efforts are directed towards infectious coryza or the Beak and Feather Disease virus.  One of my Masters students is currently investigating the cell receptors involved in the binding of Newcastle Disease virus to cancerous cells and normal cells of humans. This work will also eventually lead to a possible treatment of cancer in humans and will assist with the development of a recombinant vaccine for Newcastle disease virus,” said Prof Bragg.

We are also currently investigating an “unknown” virus which causes disease problems in poultry in the Western Cape,” said Prof Bragg.
 
“Although disinfection has been extensively used in the poultry industry, it has only been done at the pre-placement stage. In other words, disinfectants are used before the birds are placed into the house. Once the birds are placed, all use of disinfectants stops,” said Prof Bragg.

“Disinfection and bio security can be seen as the ‘Cinderella’ of disease control in poultry.  This is also true for human medicine. One just has to look at the high numbers of people who die from hospital-acquired infections to realise that disinfection is not a concept which is really clear in human health care,” said Prof Bragg.

Much research has been done in the control of diseases through vaccination and through the use of antibiotics. “These pillars of disease control are, however, starting to crumble and more effort is needed on disinfection and bio security,” said Prof Bragg.

Prof Bragg has been working in close co-operation with a chemical manufacturing company in Stellenbosch to develop a unique disinfectant which his highly effective yet not toxic to the birds.

As a result of this unique product, he has developed the continual disinfection program for use in poultry. In this program the disinfectant is used throughout the production cycle of the birds. It is also used to ensure that there is excellent pre-placement disinfection.

“The program is extensively used for the control of infectious diseases in the parrot-breeding industry in South Africa and the product has been registered in 15 countries around the world with registration in the USA in the final process,” said Prof Bragg.

“Although the problem of plasmid mediated resistance to disinfectants is starting to rear its ugly head, this has allowed for the opening of a new research field which my group will hopefully exploit in the near future,” he said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept