Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 October 2020 | Story Lacea Loader

The Free State is currently one of the provinces in the country with the highest percentage of new tests that turn out positive for COVID-19. This also impacts on the staff and students at the University of the Free State (UFS), as the number of positive cases on the campuses has increased considerably during the past few weeks.  

The UFS experienced an increase of 47% in the number of students who tested positive from Level 2 of the national lockdown to Level 1. During the past few days, an increase of 21% in positive student cases has been experienced. In the case of staff, an increase of 34% in the number who tested positive occurred from Level 2 of the national lockdown to Level 1. Over  the past few days, an increase of 11% in positive cases has been experienced.

1. Adherence to national protocols and regulations

The safety, health, and well-being of staff and students remain a priority. Therefore, the university management is concerned about the rise in positive cases on the campuses and appeals to staff to adhere to the national protocols and regulations issued by the Ministers of Cooperative Governance and Traditional Affairs, Employment and Labour, Higher Education, Science and Innovation, and Health.   

It is important to note that non-adherence to certain of the national protocols and regulations is a criminal offence and is punishable by a fine or imprisonment of up to six months. By not adhering to national protocols and regulations, our staff is not only putting their own health at risk, but also the health of others.

2. Behaviour observed on campus  

The following behaviour has been observed among staff working on campus:
- Not adhering to social/physical distancing of 2 metres;
- Face-to-face contact without wearing masks (e.g. in boardrooms and tearooms, visiting each other in offices, etc);
- Not wearing a mask while moving on campus, as well as in buildings (except in the privacy of offices);
- Dishonesty during the screening process; and
- Non-compliance with isolation and quarantine guidelines.
Staff members are reminded that they may face disciplinary action if they do not adhere to the national COVID-19 protocols and regulations as issued by the different ministers. It is important that staff members be honest at all times during the screening process, as it has been observed that some staff members display some COVID-19-related symptoms but answer in the negative on the online screening app.

3. Reporting of positive COVID-19 cases
In terms of the directives issued by the Minister of Employment and Labour, the Minister of Health, and the Minister of Higher Education, Science and Innovation, the UFS is required to report all COVID-19 positive cases to the Department of Labour, the Department of Health, and the Department of Higher Education and Training.  All COVID-19 positive cases must thus be reported directly to the Senior Director: Human Resources (vjaarsj@ufs.ac.za) and Kovsie Health (johnr@ufs.ac.za) for further handling and reporting to the relevant government departments.

Please do not come to the campuses if you are experiencing any COVID-19-related symptoms and get tested as soon as possible.

Those staff members who test positive will receive the necessary advice from their medical practitioners and they can also contact Kovsie Health for assistance.


News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept