Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2020 | Story Nitha Ramnath


Lunchtime learning webinar series on Interdisciplinarity in Action

Mastering a musical instrument, such as the piano, requires the simultaneous integration of a multimodal, sensory system and motor information with multimodal, sensory feedback mechanisms that continuously monitor the performance. Performing intricate movements requires complex, sensory-motor programming of finger and hand movements, which can result in a reorganisation of the brain regarding functional and structural changes of existing and the establishment of new connections. Neuronal networks involved in music processing are adaptable and fast-changing. When motor skills are simplified to the most important action, it consists of nerve impulses sent to the muscles.

In this webinar, Dr Frelét de Villiers discusses the interdisciplinarity between the two fields of music and neuroscience. Promising preliminary data has been reported for applications of transcranial direct stimulation (tDCS) of the motor cortex, ranging from stroke rehabilitation to cognitive enhancement. These findings raise the alternative possibility that the fine motor control of pianists may be improved by stimulating the contralateral motor cortex. 

In our interdisciplinary study, we want to use the Halo Sport neurostimulation system (a physical training aid). This is a tDCS device, designed to optimise the efficiency of training sessions and accelerate gains in any physical skill, especially when the neurostimulation is complemented by focused repetitive training. The main questions of the study are the following: do pianists experience a noticeable difference in mastering repertoire with and without the HALO Sport device, and can functional and structural changes in the brain be observed after using the Halo Sport consistently over six months? Data collection will consist of EEG tests, fMRI scans, interviews, and analysis of performances by an expert panel. The value of the research is the possibility that practising with the HALO may improve the performance of the students and that changes in the brain may be observed. Interdisciplinary engagement is essential to conduct this research. If it is possible to establish that there are functional and structural changes in the brain and improvement in the performance of the pianists, the research can be extended to other disciplines with hopefully the same positive results.

This webinar is part of a series of three webinars on Interdisciplinarity that will be presented from November to December 2020 via Microsoft Teams for a duration of 45 minutes each. The webinar topics in the series will explore the intersection between Neuroscience and Music, between Science and Entrepreneurship, and between Science and Visual Arts.  

Date: Thursday 5 November 2020
Topic: The intersection between neuroscience and music 
Time: 13:00-13:45
RSVP: Alicia Pienaar, pienaaran1@ufs.ac.za by 4 November 2020 at 12:00
Platform: Microsoft Teams

Introduction and welcome
Prof Corli Witthuhn – Vice-Rector: Research at the University of the Free State 

Presenter
Dr Frelét de Villiers

Dr de Villiers is a Senior Lecturer at the Odeion School of Music. She is head of the Methodology modules, short learning programmes, lectures in piano, music pedagogy, arts management, and is a supervisor for postgraduate students. She is a member of the Faculty of the Humanities Research Committee, Interdisciplinary Centre for Digital Futures, Scientific Committee (Arts), and the Ethics Committee (the Humanities). Her field of expertise is piano technique, with particular emphasis on the influence of the brain and the whole-brain approach to music. Her passion is the use of technology in the music teaching situation – she developed a note-learning app, PianoBoost (available on Google Play).

News Archive

UFS cardiologists and surgeons give children a beating heart
2015-04-23

Photo: René-Jean van der Berg

A team from the University of the Free State School for Medicine work daily unremittingly to save the lives of young children who have been born with heart defects by carrying out highly specialised interventions and operations on them. These operations, which are nowadays performed more and more frequently by cardiologists from the UFS School of Medicine, place the UFS on a similar footing to world-class cardiology and cardio-thoracic units.

One of the children is seven-month-old Montsheng Ketso who recently underwent a major heart operation to keep the left ventricle of her heart going artificially.

Montsheng was born with a rare, serious defect of the coronary artery, preventing the left ventricle from receiving enough blood to pump to the rest of the body.

This means that the heart muscle can suffer damage because these children essentially experience a heart attack at a very young age.

In a healthy heart, the left ventricle receives oxygenated blood from the left atrium. Then the left ventricle pumps this oxygen-rich blood to the aorta whence it flows to the rest of the body. The heart muscle normally receives blood supply from the oxygenated aorta blood, which in this case cannot happen.

Photo: René-Jean van der Berg

“She was very ill. I thought my baby was going to die,” says Mrs Bonizele Ketso, Montsheng’s mother.

She says that Montsheng became sick early in February, and she thought initially it was a tight chest or a cold. After a doctor examined and treated her baby, Montsheng still remained constantly ill, so the doctor referred her to Prof Stephen Brown, paediatric cardiologist at the UFS and attached to Universitas Hospital.

Here, Prof Brown immediately got his skilled team together as quickly as possible to diagnose the condition in order to operate on Montsheng.

During the operation, the blood flow was restored, but since Montsheng’s heart muscle was seriously damaged, the heart was unable to contract at the end of the operation. Then she was coupled to a heart-lung machine to allow the heart to rest and give the heart muscle chance to recover. The entire team of technologists and the dedicated anaesthetist, Dr Edwin Turton, kept a vigil day and night for several days.

Prof Francis Smit, chief specialist at the UFS Department of Cardiothoracic Surgery, explains that without this operation Montsheng would not have been able to celebrate her first birthday.

“After the surgery, these children can reach adulthood without further operations. Within two to three months after the operation, she will have a normal active life, although for about six months she will still use medication. Thereafter, she will be tiptop and shortly learn to crawl and walk.”

Mrs Ketso is looking forward enormously to seeing her daughter stand up and take her first steps. A dream which she thought would never come true.    

“Write there that I really love these doctors.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept