Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2020 | Story Nitha Ramnath


Lunchtime learning webinar series on Interdisciplinarity in Action

Mastering a musical instrument, such as the piano, requires the simultaneous integration of a multimodal, sensory system and motor information with multimodal, sensory feedback mechanisms that continuously monitor the performance. Performing intricate movements requires complex, sensory-motor programming of finger and hand movements, which can result in a reorganisation of the brain regarding functional and structural changes of existing and the establishment of new connections. Neuronal networks involved in music processing are adaptable and fast-changing. When motor skills are simplified to the most important action, it consists of nerve impulses sent to the muscles.

In this webinar, Dr Frelét de Villiers discusses the interdisciplinarity between the two fields of music and neuroscience. Promising preliminary data has been reported for applications of transcranial direct stimulation (tDCS) of the motor cortex, ranging from stroke rehabilitation to cognitive enhancement. These findings raise the alternative possibility that the fine motor control of pianists may be improved by stimulating the contralateral motor cortex. 

In our interdisciplinary study, we want to use the Halo Sport neurostimulation system (a physical training aid). This is a tDCS device, designed to optimise the efficiency of training sessions and accelerate gains in any physical skill, especially when the neurostimulation is complemented by focused repetitive training. The main questions of the study are the following: do pianists experience a noticeable difference in mastering repertoire with and without the HALO Sport device, and can functional and structural changes in the brain be observed after using the Halo Sport consistently over six months? Data collection will consist of EEG tests, fMRI scans, interviews, and analysis of performances by an expert panel. The value of the research is the possibility that practising with the HALO may improve the performance of the students and that changes in the brain may be observed. Interdisciplinary engagement is essential to conduct this research. If it is possible to establish that there are functional and structural changes in the brain and improvement in the performance of the pianists, the research can be extended to other disciplines with hopefully the same positive results.

This webinar is part of a series of three webinars on Interdisciplinarity that will be presented from November to December 2020 via Microsoft Teams for a duration of 45 minutes each. The webinar topics in the series will explore the intersection between Neuroscience and Music, between Science and Entrepreneurship, and between Science and Visual Arts.  

Date: Thursday 5 November 2020
Topic: The intersection between neuroscience and music 
Time: 13:00-13:45
RSVP: Alicia Pienaar, pienaaran1@ufs.ac.za by 4 November 2020 at 12:00
Platform: Microsoft Teams

Introduction and welcome
Prof Corli Witthuhn – Vice-Rector: Research at the University of the Free State 

Presenter
Dr Frelét de Villiers

Dr de Villiers is a Senior Lecturer at the Odeion School of Music. She is head of the Methodology modules, short learning programmes, lectures in piano, music pedagogy, arts management, and is a supervisor for postgraduate students. She is a member of the Faculty of the Humanities Research Committee, Interdisciplinary Centre for Digital Futures, Scientific Committee (Arts), and the Ethics Committee (the Humanities). Her field of expertise is piano technique, with particular emphasis on the influence of the brain and the whole-brain approach to music. Her passion is the use of technology in the music teaching situation – she developed a note-learning app, PianoBoost (available on Google Play).

News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept